Refine Your Search

Search Results

Viewing 1 to 18 of 18
Journal Article

Dynamic Stiffness of Hydraulic Bushing with Multiple Internal Configurations

2013-05-13
2013-01-1924
Fluid filled bushings are commonly used in vehicle suspension and sub-frame systems due to their spectrally-varying and amplitude-dependent properties. Since the literature on this topic is sparse, a controlled laboratory prototype bushing is first designed, constructed, and instrumented. This device provides different internal combination of long and short flow passages and flow restriction elements. Experiments with sinusoidal displacement excitations are conducted on the prototype, and dynamic stiffness spectra along with fluid chamber pressure responses are measured. The frequency-dependent properties of several commonly seen hydraulic bushing designs are experimentally studied and compared under two excitation amplitudes. Further, new linear time-invariant models with one long and one short flow passages (in parallel or series) are proposed along with the limiting cases.
Journal Article

Comparative Assessment of Multi-Axis Bushing Properties Using Resonant and Non-Resonant Methods

2013-05-13
2013-01-1925
Shaped elastomeric joints such as engine mounts or suspension bushings undergo broadband, multi-axis loading; however, in practice, the elastomeric joint properties are often measured at stepped single frequencies (non-resonant test method). This article helps provide insight into multi-axis properties with new benchmark experiments that are designed to permit direct comparison between system resonant and non-resonant identification methods of the dynamic stiffness matrices of elastomeric joints, including multi-axis (non-diagonal) terms. The joints are constructed with combinations of inclined elastomeric cylinders to control non-diagonal terms in the stiffness matrix. The resonant experiment consists of an elastic metal beam end-supported by elastomeric joints coupling the in-plane transverse and longitudinal beam motion.
Journal Article

Transient Response of Hydraulic Bushing with Inertia Track and Orifice-Like Elements

2013-05-13
2013-01-1927
Hydraulic bushings are widely used in vehicle applications, such as suspension and sub-frame systems, for motion control and noise and vibration isolation. To study the dynamic properties of such devices, a controlled laboratory bushing prototype is designed and fabricated. This device has the capability of varying different combinations of long and short flow passages and flow restriction elements. Transient experiments with step-up and step-down excitations are conducted on the prototype, and the transmitted force responses are measured. The transient properties of several commonly seen hydraulic bushing designs are experimentally studied. Analytical models for bushings with different design features are developed based on the linear system theory. System parameters are then estimated for step responses based on theory and measurements. Finally, the linear models are utilized to analyze the step force measurements, from which some nonlinearities of the bushing system are identified.
Journal Article

Analysis of Speed-Dependent Vibration Amplification in a Nonlinear Driveline System Using Hilbert Transform

2013-05-13
2013-01-1894
The engine start-up process introduces speed-dependent transient vibration problems in ground vehicle drivelines as the torsional system passes through the critical speeds during the acceleration process. Accordingly, a numerical study is proposed to gain more insights about this transient vibration issue, and the focus is on nonlinear analysis. First, a new nonlinear model of a multi-staged clutch damper is developed and validated by a transient experiment. Second, a simplified nonlinear torsional oscillator model with the multi-staged clutch damper, representing the low frequency dynamics of a typical vehicle driveline, is developed. The flywheel velocity measured during the typical engine start-up process is utilized as an excitation. The envelope function of the speed-dependent response amplification is estimated via the Hilbert transform technique. Finally, the envelope function is effectively utilized to examine the effect of multi-staged clutch damper properties.
Technical Paper

Effect of Disc-Pad Contact Modification on the Brake Judder Source Using a Simplified Elasto-Kinematic Model

2013-05-13
2013-01-1907
The brake torque variation (BTV) generated due to geometric irregularities in the disc surface is generally accepted as the fundamental source of brake judder; geometric imperfections or waviness in a disc brake caliper system is often quantified as the disc thickness variation (DTV). Prior research has mainly focused on the vibration path(s) and receiver(s), though such approaches grossly simplify the source (frictional contact) dynamics and often ignore caliper dynamics. Reduction of the effective interfacial contact stiffness could theoretically reduce the friction-induced torque given a specific DTV, although this method would severely increase static compliance and fluid volume displacement. An experiment is designed to quantify the effect of disc-pad contact modifications within a floating caliper design on BTV as well as on static compliance.
Journal Article

Effect of the Tooth Surface Waviness on the Dynamics and Structure-Borne Noise of a Spur Gear Pair

2013-05-13
2013-01-1877
This article studies the effects of tooth surface waviness and sliding friction on the dynamics and radiated structure-borne noise of a spur gear pair. This study is conducted using an improved gear dynamics model while taking into account the sliding frictional contact between meshing teeth. An analytical six-degree-of-freedom (6DOF) linear time varying (LTV) model is developed to predict system responses and bearing forces. The time varying mesh stiffness is calculated using a gear contact mechanics code. A Coulomb friction model is used to calculate the sliding frictional forces. Experimental measurements of partial pressure to acceleration transfer functions are used to calculate the radiated structure-borne noise level. The roles of various time-varying parameters on gear dynamics are analyzed (for a specific example case), and the predictions from the analytical model are compared with prior literature.
Journal Article

Effect of Local Stiffness Coupling on the Modes of a Subframe-Bushing System

2013-05-13
2013-01-1904
The elastomeric joints (bushings or mounts) in vehicle structural frames are usually described as uncoupled springs (only with diagonal terms) in large scale system models. The off-diagonal terms of an elastomeric joint have been previously ignored as they are often unknown since their properties cannot be measured in a uniaxial elastomer test system. This paper overcomes this deficiency via a scientific study of a laboratory frame that is designed to maintain a high fidelity with real-world vehicle body subframes in terms of natural modes under free boundaries. The steel beam construction of the laboratory frame, with four elastomeric mounts at the corners, permits the development of a highly accurate, yet simple, beam finite element model. This allows for a correlation study between the experiment and model that helps shed light upon the underlying physical phenomenon.
Journal Article

Vibration Analysis of Powertrain Mounting System with a Combination of Active and Passive Isolators with Spectrally-varying Properties

2009-05-19
2009-01-2034
Most of the prior work on active mounting systems has been conducted in the context of a single degree-of-freedom even though the vehicle powertrain is a six degree-of-freedom isolation system. We seek to overcome this deficiency by proposing a new six degree-of-freedom analytical model of the powertrain system with a combination of active and passive mounts. All stiffness and damping elements contain spectrally-varying properties and we examine powertrain motions when excited by an oscillating torque. Two methods are developed that describe the mount elements via a transfer function (in Laplace domain). New analytical formulations are verified by comparing the frequency responses with numerical results obtained by the direct inversion method (based on Voigt type mount model). Eigensolutions of a spectrally varying mounting system are also predicted by new models.
Technical Paper

Transient Clunk Response of a Driveline System: Laboratory Experiment and Analytical Studies

2007-05-15
2007-01-2233
A laboratory experiment is designed to examine the clunk phenomenon. A static torque is applied to a driveline system via the mass of an overhanging torsion bar and electromagnet. Then an applied load may be varied via attached mass and released to simulate the step down (tip-out) response of the system. Shaft torques and torsional and translational accelerations are recorded at pre-defined locations. The static torque closes up the driveline clearances in the pinion/ring (crown wheel) mesh. With release of the applied load the driveline undergoes transient vibration. Further, the ratio of preload to static load is adjusted to lead to either no-impact or impact events. Test A provides a ‘linear’ result where the contact stiffness does not pass into clearance. This test is used for confirming transient response and studying friction and damping. Test B is for mass release with sufficient applied torque to pass into clearance, allowing the study of the clunk.
Technical Paper

Errors Associated with Transfer Path Analysis when Rotations are not Measured

2007-05-15
2007-01-2179
Previously we had found significant errors in the interfacial force results for a source-path-receiver system where only translational motions were measured. This paper examines the sources of those errors by using computational finite and boundary element models. The example case consists of a source structure (with few modes), a receiver (with many modes) and three steel rod paths. We first formulate indirect, yet exact, methods for estimating interfacial forces, by assuming that six-dimensional motions at any location are available though we focus on only the driving points. One- and three-dimensional sub-sets of the proposed formulation are compared with the six-dimensional theory in terms of interfacial force and partial sound pressure spectra.
Technical Paper

Examination of Some Vibration Isolator Models and Their Effects on Vibration and Structure-borne Noise Transmission

2003-05-05
2003-01-1477
A vibration isolator or mount is often modeled by the Voigt model describing uni-axial (longitudinal) motion with frequency-invariant parameters. However, wave effects due to the mass distribution within the isolator are observed as the frequency is increased. Further, flexural stiffness components play an important role, leading to off-axis and coupling effects. Thus, the simplified mount models could lead to erroneous predictions of the dynamic behavior of an overall system such as automotive powertrain or chassis mounting systems. This article compares various approximate isolator models using a multi-dimensional mobility model that is based on the continuous system theory. Harmonic force and moment excitations are separately applied to a rigid body source to investigate the multi-dimensional vibratory behavior. Analysis is however limited to a linear time-invariant system and the mobility synthesis method is utilized to predict the frequency domain behavior.
Technical Paper

Vibration Characteristics of Cardboard Inserts in Shells

2003-05-05
2003-01-1489
A study has been conducted to determine the noise and vibration effect of inserting a cardboard liner into a thin, circular cross-sectioned, cylindrical shell. The relevance of such a study is to improve the understanding of the effects when a cardboard liner is used in a propeller shaft for noise and vibration control purposes. It is found from the study that the liner adds significant modal stiffness, while an increase in modal mass is also observed for a particular shell type of mode. Further, the study has shown that the additional modal damping provided by the liner is not appropriately modeled by Coulomb friction damping, a damping model often intuitively associated with cardboard materials. Rather, the damping is best modeled as proportional viscous damping.
Technical Paper

Structure-Borne Noise Measures and Their Correlation to Sound Radiation over a Broad Range of Frequencies

2003-05-05
2003-01-1450
Structure-borne noise within vehicle structures is often transmitted in a multi-dimensional manner and thus the vibro-acoustic model(s) of automotive powertrain or chassis must incorporate longitudinal and transverse (flexural) motions as well as their couplings. In this article, we employ the continuous system theory to model a typical vibration isolator (say the engine mounting system) and a compliant receiver that could simulate the body structure. The powertrain source is however assumed to be rigid, and both harmonic force and moment excitations are considered. Our analysis is limited to a linear time-invariant system, and the frequency domain based mobility method is utilized to synthesize the overall system. Contributions of both in-plane and flexural motions to structure-borne and radiated noise are incorporated. Two examples are considered to illustrate the methodology.
Technical Paper

Sound Radiation from a Disk Brake Rotor Using a Semi-Analytical Method

2003-05-05
2003-01-1620
Modal sound radiation of a brake rotor is expressed in terms of analytical solutions of a generic thick annular disk having similar geometric dimensions. Finite element method is used to determine structural modes and response. Vibro-acoustic responses such as surface velocities and radiated sound pressures due to a multi-modal excitation are calculated from synthesized structural modes and modal acoustic radiation of the rotor using the modal expansion technique. In addition, acoustic power and radiation efficiency spectra corresponding to a specific force excitation are obtained from the sound pressure data. Accuracy of the new semi-analytical method has been confirmed by purely numerical analyses based on finite element and boundary element models. Our method should lead to an improved understanding of the sound radiation from a brake rotor and strategies to minimize squeal noise radiation could be formulated.
Technical Paper

Effect of Viscoelastic Patch Damping on Casing Cover Dynamics

2001-04-30
2001-01-1463
Many automotive components and sub-systems require viscoelastic damping treatments to control noise and vibration characteristics. To aid the dynamic design process, new approaches are needed for modeling of partial damping treatments and characterization of the overall dynamic behavior. The analytical component of the design process is illustrated via the transmission casing cover, along with supporting experiments. First, the vibration response of production casing plates is examined, with and without the constrained layer treatment. A modified flat plate is employed along with a generic housing that provides the realistic boundary conditions for subsequent work. A simplified analytical damping model for constrained viscoelastic layer damping is suggested based on assumed modal functions. Using the analytical model, design guidelines in terms of optimal patch shapes and locations are suggested.
Technical Paper

Vibration Power Transmission Through Multi-Dimensional Isolation Paths Over High Frequencies

2001-04-30
2001-01-1452
In many vibration isolation problems, translational motion has been regarded as a major contributor to the energy transmitted from a source to a receiver. However, the rotational components of isolation paths must be incorporated as the frequency range of interest increases. This article focuses on the flexural motion of an elastomeric isolator but the longitudinal motion is also considered. In this study, the isolator is modeled using the Timoshenko beam theory (flexural motion) and the wave equation (longitudinal motion), and linear, time-invariant system assumption is made throughout this study. Two different frequency response characteristics of an elastomeric isolator are predicted by the Timoshenko beam theory and are compared with its subsets. A rigid body is employed for the source and the receiver is modeled using two alternate formulations: an infinite beam and then a finite beam. Power transmission efficiency concept is employed to quantify the isolation achieved.
Technical Paper

Examination of High Frequency Characterization Methods for Mounts

2001-04-30
2001-01-1444
The knowledge of frequency-dependent dynamic stiffnesses of mounts, in axial and flexural motions, is needed to determine the behavior of many automotive sub-systems. Consequently, characterization and modeling of vibration isolators is increasingly becoming more important in mid and high frequency regimes where very few methods are known to exist. This paper critically examines some of the approximate identification methods that have been proposed in the literature. Then we present a new experimental identification method that yields frequency-dependent multi-dimensional dynamic stiffnesses of an isolator. The scope is however limited to a linear time-invariant system and our analysis is restricted to the frequency domain. The new characterization method uses two inertial elements at both ends of an isolator and free boundary conditions are maintained during testing.
Technical Paper

Determination of Viscoelastic Core Material Properties Using Sandwich Beam Theory and Modal Experiments

1999-05-17
1999-01-1677
Damping material for automotive structures is often quantified in terms of composite loss factor or damping ratio by using ASTM/SAE beam or modal tests. Simplified expressions have also been used to estimate certain material properties. However, none of these tests provide any information on the properties of viscoelastic core material such as rubber or adhesive in practical structures. To overcome this deficiency, a refined estimation procedure is proposed. A new sandwich beam model has been developed which describes all layers of an arbitrarily applied damping patch. By using both analytical predictions and modal experiments on a cantilever beam, spectrally-varying loss factor and shear modulus of the unknown core are determined.
X