Refine Your Search


Search Results

Technical Paper

Effect of E-Modulus Variation on Springbackand a Practical Solution

Springback affects the dimensional accuracy and final shape of stamped parts. Accurate prediction of springback is necessary to design dies that produce the desired part geometry and tolerances. Springback occurs after stamping and ejection of the part because the state of the stresses and strains in the deformed material has changed. To accurately predict springback through finite element analysis, the material model should be well defined for accurate simulation and prediction of stresses and strains after unloading. Despite the development of several advanced material models that comprehensively describe the Bauschinger effect, transient behavior, permanent softening of the blank material, and unloading elastic modulus degradation, the prediction of springback is still not satisfactory for production parts. Dies are often recut several times, after the first tryouts, to compensate for springback and achieve the required part geometry.
Technical Paper

Fabrication of a Parallel-Series PHEV for the EcoCAR 2 Competition

The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 51 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the fabrication and control implementation process followed by the Ohio State team during Year 2 of the competition. The fabrication process includes finalizing designs based on identified requirements, building and assembling components, and performing extensive validation testing on the mechanical, electrical and control systems.
Journal Article

Effect of Local Stiffness Coupling on the Modes of a Subframe-Bushing System

The elastomeric joints (bushings or mounts) in vehicle structural frames are usually described as uncoupled springs (only with diagonal terms) in large scale system models. The off-diagonal terms of an elastomeric joint have been previously ignored as they are often unknown since their properties cannot be measured in a uniaxial elastomer test system. This paper overcomes this deficiency via a scientific study of a laboratory frame that is designed to maintain a high fidelity with real-world vehicle body subframes in terms of natural modes under free boundaries. The steel beam construction of the laboratory frame, with four elastomeric mounts at the corners, permits the development of a highly accurate, yet simple, beam finite element model. This allows for a correlation study between the experiment and model that helps shed light upon the underlying physical phenomenon.
Technical Paper

Autoignition Characteristics of Primary Reference Fuels and their Mixtures

This study investigates the autoignition of Primary Reference Fuels (PRFs) using a detailed kinetic model. The chemical kinetics software CHEMKIN is used to facilitate solutions in a constant volume reactor and a variable volume reactor, with the latter representing an IC engine. Experimental shock tube and HCCI engine data from literature is compared with the present predictions in these two reactors. The model is then used to conduct a parametric study in the constant volume reactor of the effect of inlet pressure, inlet temperature, octane number, fuel/air equivalence ratio, and exhaust gas recirculation (EGR) on the autoignition of PRF/air mixtures. A number of interesting characteristics are demonstrated in the parametric study. In particular, it is observed that PRFs can exhibit single or two stage ignition depending on the inlet temperature. The total ignition delay, whether single or two stage, is correlated withn-C7H16/O2 ratio.
Technical Paper

Miniaturized Sensor Systems for Early Fire Detection in Spacecraft

A fire in spacecraft or habitat supporting NASA's Exploration mission could jeopardize the system, mission, and/or crew. Given adequate measures for fire prevention, the hazard from a fire can be significantly reduced if fire detection is rapid and occurs in the early stages of fire development. The simultaneous detection of both particulate and gaseous products has been proven to rapidly detect fires and accurately distinguish between real fires and nuisance sources. This paper describes the development status of gaseous and particulate sensor elements, integrated sensor systems, and system testing. It is concluded that while development is still necessary, the fundamental approach of smart, miniaturized, multisensor technology has the potential to significantly improve the safety of NASA space exploration systems.
Technical Paper

Welding Characteristics in Deformation Resistance Welding

Deformation Resistance Welding (DRW) is a process that employs resistance heating to raise the temperature of the materials being welded to the appropriate forging range, followed by shear deformation which increases the contacting surface area of the materials being welded. Because DRW is a new process, it became desirable to establish variable selection strategies which can be integrated into a production procedure. A factorial design of experiment was used to examine the influence of force, number of pulses, and weld cycles (heating/cooling time ratio) on the DRW process. Welded samples were tensile tested to determine their strength. Once tensile testing was complete, the resulting strengths were observed and compared to corresponding percent heat and percent reduction in thickness. Tensile strengths ranged from 107 kN to 22.2 kN. A relationship between the maximum current and the weld variables was established.
Technical Paper

Effect of Intake Primary Runner Blockages on Combustion Characteristics and Emissions with Stoichiometric and EGR-diluted Mixtures in SI Engines

In-cylinder charge motion is known to significantly increase turbulence intensity, accelerate combustion rate, and reduce cyclic variation. This, in turn, extends the tolerance to exhaust gas recirculation (EGR), while the introduction of EGR results in much lowered nitrogen oxide (NOx) emissions and reduced fuel consumption. The present study investigates the effect of charge motion in a spark ignition engine on fuel consumption, combustion, and engine-out emissions with stoichiometric and EGR-diluted mixtures under part-load operating conditions. Experiments have been performed with a Chrysler 2.4L 4-valve I4 engine under 2.41 bar brake mean effective pressure at 1600 rpm over a spark range around maximum brake torque timing. The primary intake runners are partially blocked to create different levels of tumble, swirl, and cross-tumble (swumble) motion in the cylinder before ignition.
Technical Paper

Errors Associated with Transfer Path Analysis when Rotations are not Measured

Previously we had found significant errors in the interfacial force results for a source-path-receiver system where only translational motions were measured. This paper examines the sources of those errors by using computational finite and boundary element models. The example case consists of a source structure (with few modes), a receiver (with many modes) and three steel rod paths. We first formulate indirect, yet exact, methods for estimating interfacial forces, by assuming that six-dimensional motions at any location are available though we focus on only the driving points. One- and three-dimensional sub-sets of the proposed formulation are compared with the six-dimensional theory in terms of interfacial force and partial sound pressure spectra.
Technical Paper

Development and Verification of Suspension Parameters for The Ohio State Buckeye Bullet 2 Land Speed Vehicle

The Buckeye Bullet set domestic as well as international speed records for electric vehicles in 2004. The next generation of land speed vehicle from Ohio State called the Buckeye Bullet 2 (henceforth the BB2) will again challenge and hopefully achieve several new speed records. The Buckeye Bullet suspension worked relatively well but was found to not be quite optimal for the vehicle. The purpose of the work outlined here was to develop a new front and rear suspension for the BB2 that would be an improvement over the suspension of the original Bullet. Previous to the start of this work part of the suspension had already been designed in the form of an upright/control arm setup. This paper works on taking the suspension to completion from this point of design. Work done includes developing the final design, determining suspension parameters, building an ADAMS model, and testing the ADAMS model.
Technical Paper

Simplified MADYMO Model of the IHRA Head-form Impactor

Interest in pedestrian head injury has prompted a need to measure the potential of head injury resulting from vehicular impacts. A variety of head impactors have been developed to fulfill this measurement need. A protocol has been developed by the International Harmonization Research Activity (IHRA) to use head impactor measurements to predict head injury. However, the effect of certain characteristics of the various head impactors on the measurement procedure is not well understood. This includes the location of the accelerometers within the head-form and testing the head-form under the variety of conditions necessary to establish its global performance. To address this problem, a simple model of the IHRA head-form has been developed. This model was created using MADYMO© and consists of a solid sphere with a second sphere representing the vinyl covering. Stiffness and damping characteristics of the vinyl covering were determined analytically from drop test data of an IHRA head-form.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

The Application of Piezoceramic Actuation to Direct Fuel Injection

With increasing demands to reduce emissions from internal combustion engines, engine manufacturers are forced to seek out new technology. One such technology employed primarily in the diesel and two-stroke engine community is direct-injection (DI). Direct injection has shown promising results in reduction of CO and NOx for both two- and four-stroke engines. While having been used for several years in the diesel industry, direct injection has been scrutinized for an inability to meet future requirements to reduce particulate matter emissions. Direct injection has also came under fire for complicating fuel delivery systems, thus making it cost prohibitive for small utility engine manufacturers. Recent research shows that the application of piezo-driven actuators has a positive effect on soot formation reduction for diesel engines and as this paper will distinguish, has the ability to simplify direct injection fuel delivery systems in general.
Technical Paper

Approximating Engine Tailpipe Orifice Noise Sound Quality using a Surge Tank and In-Duct Measurements

Because of the need to safely vent exhaust gases, most engine dynamometer facilities are not well suited to measuring engine exhaust orifice noise. Depending on the location of the dyno facility within the building, the exhaust system may need to be extended in order to properly vent the exhaust fumes. This additional ducting changes the acoustic modes of the exhaust system which will change the measured orifice noise. Duct additions downstream of the original orifice location also alter the termination impedance such that in-duct pressure measurements with and without the extended exhaust system can vary significantly. In order to minimize the effect of the building's exhaust system on the desired engine exhaust system measurements, the present approach terminates the engine exhaust into a large enclosed volume or surge tank before venting the gases into the building's ventilation system.
Technical Paper

The 2002 Ohio State University FutureTruck - The BuckHybrid002

This year, in the third year of FutureTruck competition, the Ohio State University team has taken the challenge to convert a 2002 Ford Explorer into a more fuel efficient and environmentally friendly SUV. This goal was achieved by use of a post-transmission, charge sustaining, parallel hybrid diesel-electric drivetrain. The main power source is a 2.5-liter, 103 kW advanced CIDI engine manufactured by VM Motori. A 55 kW Ecostar AC induction electric motor provides the supplemental power. The powertrain is managed by a state of the art supervisory control system which optimizes powertrain characteristics using advanced energy management and emission control algorithms. A unique driver interface implementing advanced telematics, and an interior designed specifically to reduce weight and be more environmentally friendly add to the utility of the vehicle as well as the consumer appeal.
Technical Paper

The Balance Between Durability, Reliability, and Affordability in Structural Composites Manufacturing: Preliminary Results

Fiber reinforced structural composites will play a key role in the development of the next generation of transportation vehicles (passenger cars, vans, light trucks and heavy trucks) due to their high strength-to-weight and stiffness-to-weight ratio compared to metals. An integrated assessment of the durability, reliability, and affordability of these materials is critical to facilitate the inclusion of these materials into new designs. The result of this assessment should provide information to find the balance between the three performance measures. This paper describes a method to develop this assessment in the fabrication of sheet molding compound (SMC) parts, and discusses the concept of Preform Insert Assembly (PIA) for improved affordability in the manufacturing of composite parts.
Technical Paper

Flow-Acoustic Coupling in Quarter-Wave Resonators Using Computational Fluid Dynamics

Quarter-wave resonators are commonly used as acoustic silencers in automotive air induction systems. Similar closed side branches can also be formed in the idle air bypass, exhaust gas recirculation, and positive crankcase ventilation systems of engines. The presence of a mean flow across these side branches can lead to an interaction between the mean flow and the acoustic resonances of the side branch. At discrete flow conditions, this coupling between the flow and acoustic fields may produce high amplitude acoustic pressure pulsations. For the quarter-wave resonator, this interaction can turn the silencer into a noise generator, while for systems where a valve is located at the closed end of the side branch the large pressure pulsations can cause the valve to fail. This phenomenon is not limited to automotive applications, and also occurs in natural gas pipelines, aircraft, and numerous other internal and external flows.
Technical Paper

Springback Analysis with a Modified Hardening Model

Previously-reported draw-bend tests showed large discrepancies in springback angles from those predicted by two-dimensional finite element modeling (FEM). In some cases, the predicted angle was several times the measured angle. With more careful 3-D simulation taking into account anticlastic curvature, a significant discrepancy persisted. In order to evaluate the role of the Bauschinger Effect in springback, a transient hardening model was constructed based on novel tension-compression tests for for three sheet materials: drawing-quality steel (baseline material), high-strength low-alloy steel, and 6022-T4 aluminum alloy. This model reproduces the main features of hardening following a strain reversal: low yield stress, rapid strain hardening, and, optionally, permanent softening or hardening relative to the monotonic hardening law. The hardening law was implemented and 3-D FEM was carried out for comparison with the draw-bend springback results.
Technical Paper

Tube Hydroforming - State-of-the-Art and Future Trends

With the availability of advanced machine designs and controls, tube hydroforming has become an economic alternative to various stamping processes. The technology is relatively new so that there is no large “knowledge base” to assist the product and process designers. This paper reviews the fundamentals of tube hydroforming technology and discusses how various parameters, such as tube material properties, pre-form geometry, lubrication and process control affect product design and quality. In addition, relations between process variables and achievable part geometry are discussed. Finally, using examples, the status of the current technology and critical issues for future development are reviewed.
Technical Paper

Implementing Computer Simulation into the Concept to Product Process

Process simulation for product and process design is currently being practiced in industry. However, a number of input variables have a significant effect on the accuracy and reliability of computer predictions. A study was conducted to evaluate the capability of finite element method (FEM) simulations for predicting part characteristics and process conditions in forming complex-shaped, industrial parts. In industrial applications, there are two objectives for conducting FEM simulations of the stamping process: (1) to optimize the product design by analyzing formability at the product design stage and (2) to reduce the tryout time and cost in process design by predicting the deformation process in advance during the die design stage. For each of these objectives, two kinds of FEM simulations are applied.
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.