Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Dynamics Model for Simulation Use with Autoware.AI on ROS

2024-04-09
2024-01-1970
This research focused on developing a methodology for a vehicle dynamics model of a passenger vehicle outfitted with an aftermarket Automated Driving System software package using only literature and track based results. This package consisted of Autoware.AI (Autoware ®) operating on Robot Operating System 1 (ROS™) with C++ and Python ®. Initial focus was understanding the basics of ROS and how to implement test scenarios in Python to characterize the control systems and dynamics of the vehicle. As understanding of the system continued to develop, test scenarios were adapted to better fit system characterization goals with identification of system configuration limits. Trends from on-track testing were identified and paired with first-order linear systems to simulate physical vehicle responses to given command inputs. Sub-models were developed and simulated in MATLAB ® with command inputs from on-track testing.
Technical Paper

Vehicle-in-Virtual-Environment Method for ADAS and Connected and Automated Driving Function Development, Demonstration and Evaluation

2024-04-09
2024-01-1967
The current approach for new Advanced Driver Assistance System (ADAS) and Connected and Automated Driving (CAD) function development involves a significant amount of public road testing which is inefficient due to the number miles that need to be driven for rare and extreme events to take place, thereby being very costly also, and unsafe as the rest of the road users become involuntary test subjects. A new development, evaluation and demonstration method for safe, efficient, and repeatable development, demonstration and evaluation of ADAS and CAD functions called Vehicle-in-Virtual –Environment (VVE) was recently introduced as a solution to this problem. The vehicle is operated in a large, empty, and flat area during VVE while its localization and perception sensor data is fed from the virtual environment with other traffic and rare and extreme events being generated as needed.
Technical Paper

Energy Efficiency Technologies of Connected and Automated Vehicles: Findings from ARPA-E’s NEXTCAR Program

2024-04-09
2024-01-1990
This paper details the advancements and outcomes of the NEXTCAR (Next-Generation Energy Technologies for Connected and Automated on-Road Vehicles) program, an initiative led by the Advanced Research Projects Agency-Energy (ARPA-E). The program focusses on harnessing the full potential of Connected and Automated Vehicle (CAV) technologies to develop advanced vehicle dynamic and powertrain control technologies (VD&PT). These technologies have shown the capability to reduce energy consumption by 20% in conventional and hybrid electric cars and trucks at automation levels L1-L3 and by 30% L4 fully autonomous vehicles. Such reductions could lead to significant energy savings across the entire U.S. vehicle fleet.
Technical Paper

Design, Prototyping, and Implementation of a Vehicle-to-Infrastructure (V2I) System for Eco-Approach and Departure through Connected and Smart Corridors

2024-04-09
2024-01-1982
The advent of Vehicle-to-Everything (V2X) communication has revolutionized the automotive industry, particularly with the rise of Advanced Driver Assistance Systems (ADAS). V2X enables vehicles to communicate not only with each other (V2V) but also with infrastructure (V2I) and pedestrians (V2P), enhancing road safety and efficiency. ADAS, which includes features like adaptive cruise control and automatic intersection navigation, relies on V2X data exchange to make real-time decisions and improve driver assistance capabilities. Over the years, the progress of V2X technology has been marked by standardization efforts, increased deployment, and a growing ecosystem of connected vehicles, paving the way for safer and more efficient automated navigation. The EcoCAR Mobility Challenge was a 4-year student competition among 12 universities across the United States and Canada sponsored by the U.S.
Technical Paper

Numerical Study of a Six-Stroke Gasoline Compression Ignition (6S-GCI) Engine Combustion with Oxygenated Fuels

2024-04-09
2024-01-2373
A numerical investigation of a six-stroke direct injection compression ignition engine operation in a low temperature combustion (LTC) regime is presented. The fuel employed is a gasoline-like oxygenated fuel consisting of 90% isobutanol and 10% diethyl ether (DEE) by volume to match the reactivity of conventional gasoline with octane number 87. The computational simulations of the in-cylinder processes were performed using a high-fidelity multidimensional in-house 3D CFD code (MTU-MRNT) with improved spray-sub models and CHEMKIN library. The combustion chemistry was described using a two-component (isobutanol and DEE) fuel model whose oxidation pathways were given by a reaction mechanism with 177 species and 796 reactions.
Technical Paper

Data-Driven Estimation of Coastdown Road Load

2024-04-09
2024-01-2276
Emissions and fuel economy certification testing for vehicles is carried out on a chassis dynamometer using standard test procedures. The vehicle coastdown method (SAE J2263) used to experimentally measure the road load of a vehicle for certification testing is a time-consuming procedure considering the high number of distinct variants of a vehicle family produced by an automaker today. Moreover, test-to-test repeatability is compromised by environmental conditions: wind, pressure, temperature, track surface condition, etc., while vehicle shape, driveline type, transmission type, etc. are some factors that lead to vehicle-to-vehicle variation. Controlled lab tests are employed to determine individual road load components: tire rolling resistance (SAE J2452), aerodynamic drag (wind tunnels), and driveline parasitic loss (dynamometer in a driveline friction measurement lab). These individual components are added to obtain a road load model to be applied on a chassis dynamometer.
Technical Paper

Introduction of the eGTU – An Electric Version of the Generic Truck Utility Aerodynamic Research Model

2024-04-09
2024-01-2273
Common aerodynamic research models have been used in aerodynamic research throughout the years to assist with the development and correlation of new testing and numerical techniques, in addition to being excellent tools for gathering fundamental knowledge about the physics around the vehicle. The generic truck utility (GTU) was introduced by Woodiga et al. [1] in 2020 following successful adoption of the DrivAer (Heft et al. [2]) by the automotive aerodynamics community with the goal to capture the unique flow fields created by pickups and large SUVs. To date, several studies have been presented on the GTU (Howard et. al 2021 [3], Gleason, Eugen 2022 [4]), however, with the increasing prevalence of electric vehicles (EVs), the authors have created additional GTU configurations to emulate an EV-style underbody for the GTU.
Technical Paper

Development and Validation of Dynamic Programming based Eco Approach and Departure Algorithm

2024-04-09
2024-01-1998
Eco Approach and Departure (Eco-AnD) is a Connected Automated Vehicle (CAV) technology aiming to reduce energy consumption for crossing a signalized intersection or set of intersections in a corridor that features vehicle-to-infrastructure (V2I) communication capability. This research focuses on developing a Dynamic Programming (DP) based algorithm for a PHEV operating in Charge Depleting mode. The algorithm used the Reduced Order Energy Model (ROM) to capture the vehicle powertrain characteristics and road grade to capture the road dynamics. The simulation results are presented for a real-world intersection and 20-25% energy benefits are shown by comparing against a simulated human driver speed profile. The vehicle-level validation of the developed algorithm is carried out by performing closed-course track testing of the optimized speed solutions on a real CAV vehicle.
Technical Paper

Next Generation High Efficiency Boosted Engine Concept

2024-04-09
2024-01-2094
This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature.
Technical Paper

Facilitating Project-Based Learning Through Application of Established Pedagogical Methods in the SAE AutoDrive Challenge Student Design Competition

2024-04-09
2024-01-2075
The AutoDrive Challenge competition sponsored by General Motors and SAE gives undergraduate and graduate students an opportunity to get hands-on experience with autonomous vehicle technology and development as they work towards their degree. Michigan Technological University has participated in the AutoDrive Challenge since its inception in 2017 with students participating through MTU’s Robotic System Enterprise. The MathWorks Simulation Challenge has been a component of the competition since its second year, tasking students with the development of perception, control and testing algorithms using MathWorks software products. This paper presents the pedagogical approach graduate student mentors used to enable students to build their understanding of autonomous vehicle concepts using familiar tools. This approach gives undergraduate students a productive experience with these systems that they may not have encountered in coursework within their academic program.
Technical Paper

Energy-Optimal Allocation of a Heterogeneous Delivery Fleet in a Dynamic Network of Distribution and Fulfillment Centers

2024-04-09
2024-01-2448
This paper presents an energy-optimal plan for the allocation of a heterogeneous fleet of delivery vehicles in a dynamic network of multiple distribution centers and fulfillment centers. Each distribution center with a heterogeneous fleet of delivery vehicles is considered as a hub connected with the fulfillment centers through the routes as spokes. The goal is to minimize the overall energy consumption of the fleet while meeting the demand of each of the fulfillment centers. To achieve this goal, the problem is divided into two sub-problems that are solved in a hierarchical way. Firstly, for each spoke, the optimal number of vehicles to be allocated from each hub is determined. Secondly, given the number of allocated delivery vehicles from a hub for each spoke, the optimal selection of vehicle type from the available heterogeneous fleet at the hub is done for each of spokes based on the energy requirement and the energy efficiency of the spoke under consideration.
Technical Paper

Modelling and Analysis of a Cooperative Adaptive Cruise Control (CACC) Algorithm for Fuel Economy

2024-04-09
2024-01-2564
Connectivity in ground vehicles allows vehicles to share crucial vehicle data, such as vehicle acceleration and speed, with each other. Using sensors such as radars and lidars, on the other hand, the intravehicular distance between a leader vehicle and a host vehicle can be detected. Cooperative Adaptive Cruise Control (CACC) builds upon ground vehicle connectivity and sensor information to form convoys with automated car following. CACC can also be used to improve fuel economy and mobility performance of vehicles in the said convoy. In this paper, a CACC system is presented, where the acceleration of the lead vehicle is used in the calculation of desired vehicle speed. In addition to the smooth car following abilities, the proposed CACC also has the capability to calculate a speed profile for the ego vehicle that is fuel efficient, making it an Ecological CACC (Eco-CACC) model.
Technical Paper

Path Planning and Robust Path Tracking Control of an Automated Parallel Parking Maneuver

2024-04-09
2024-01-2558
Driver’s license examinations require the driver to perform either a parallel parking or a similar maneuver as part of the on-road evaluation of the driver’s skills. Self-driving vehicles that are allowed to operate on public roads without a driver should also be able to perform such tasks successfully. With this motivation, the S-shaped maneuverability test of the Ohio driver’s license examination is chosen here for automatic execution by a self-driving vehicle with drive-by-wire capability and longitudinal and lateral controls. The Ohio maneuverability test requires the driver to start within an area enclosed by four pylons and the driver is asked to go to the left of the fifth pylon directly in front of the vehicle in a smooth and continuous manner while ending in a parallel direction to the initial one. The driver is then asked to go backwards to the starting location of the vehicle without stopping the vehicle or hitting the pylons.
Technical Paper

Trends in Driver Response to Forward Collision Warning and the Making of an Effective Alerting Strategy

2024-04-09
2024-01-2506
This paper compares the results from three human factors studies conducted in a motion-based simulator in 2008, 2014 and 2023, to highlight the trends in driver's response to Forward Collision Warning (FCW). The studies were motivated by the goal to develop an effective HMI (Human-Machine Interface) strategy that enables the required driver's response to FCW while minimizing the level of annoyance of the feature. All three studies evaluated driver response to a baseline-FCW and no-FCW conditions. Additionally, the 2023 study included two modified FCW chime variants: a softer FCW chime and a fading FCW chime. Sixteen (16) participants, balanced for gender and age, were tested for each group in all iterations of the studies. The participants drove in a high-fidelity simulator with a visual distraction task (number reading). After driving 15 minutes in a nighttime rural highway environment, a surprise forward collision threat arose during the distraction task.
Technical Paper

Development of a Dynamic Nonlinear Finite Element Model of the Large Omnidirectional Child Crash Test Dummy

2024-04-09
2024-01-2509
The Large Omnidirectional Child (LODC) developed by the National Highway Traffic Safety Administration (NHTSA) has an improved biofidelity over the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD). The LODC design incorporates enhancements to many body region subassemblies, including a redesigned HIII-10C head with pediatric mass properties, and the neck, which produces head lag with Z-axis rotation at the atlanto-occipital joint, replicating the observations made from human specimens. The LODC also features a flexible thoracic spine, a multi-point thoracic deflection measurement system, skeletal anthropometry that simulates a child's sitting posture, and an abdomen that can measure belt loading directly. This study presents the development and validation of a dynamic nonlinear finite element model of the complete LODC dummy. Based on the three-dimensional CAD model, Hypermesh was used to generate a mesh of the finite element (FE) LODC model.
Technical Paper

CFD Simulation of Visor for cleaning Autonomous Vehicle sensors: Focus on a Roof Mounted Lidar

2024-04-09
2024-01-2526
The performance of autonomous vehicle (AV) sensors, such as lidars or cameras, is often hindered during rain. Rain droplets on the AV sensors can cause beam attenuation and backscattering, which in turn causes inaccurate sensor readings and misjudgment by AV algorithms. Most AV systems are equipped with cleaning systems to remove contaminants, such as rain, from AV sensors. One such mechanism is to blow high-speed air over the AV sensors. However, the cleaning air can be hindered by incoming headwind, especially at higher vehicle speeds. An innovative idea proposed here is to use a visor to improve the cleaning performance of AV cleaning systems at higher vehicle speeds. The effectiveness of a baseline visor design was studied using computational fluid dynamics (CFD) air flow analysis and Lagrangian rain droplet tracking. The baseline visor improved the AV sensor cleaning performance in two ways. First, the visor protects the cleaning air flow from being disturbed by headwind.
Technical Paper

A Mechanical Energy Control Volume Approach Applied to CFD Simulations of Road Vehicles

2024-04-09
2024-01-2524
This paper presents a mechanical energy control volume analysis for incompressible flow around road vehicles using results from Detached Eddy Simulation Computational Fluid Dynamics calculations. The control volume approach equates the rate of work done by surface forces of the vehicle to (i) the rate of work and kinetic energy flux at the control volume boundaries (particularly in the vehicle wake) and (ii) the rate of energy loss in the domain. At the downstream control volume boundary, the wake terms can be divided into lift-induced and profile drag terms. The rate of energy loss in the domain can be used as a volumetric analog for drag (drag counts/m3, when normalized). This allows for a quantitative break down of the contributions of different flow features/regions to the overall drag force.
Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Route-Optimized Energy Usage for a Plug-in Hybrid Electric Vehicle Using Mode Blending

2024-04-09
2024-01-2775
This paper presents a methodology to optimize the blending of charge-depleting (CD) and charge-sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV). The objective of the optimization is to best utilize onboard energy for minimum overall energy consumption based on speed and elevation profile. The optimization reduces overall energy consumption when the selected route cannot be completely driven in all-electric mode. The optimization method splits drive cycles into constant distance segments and then uses a reduced-order model to sort the segments by the best use of battery energy vs. fuel energy. The PHEV used in this investigation is the Stellantis Pacifica. Results support energy savings up to 20% which depend on the route and initial battery State of Charge (SOC). Initial optimization takes 1 second for 38 km and 3 seconds for 154 km.
Technical Paper

Reduction of Computational Efforts to Obtain Parasitic Capacitances Using FEM in Three-Phase Permanent Magnet Motors

2024-04-09
2024-01-2742
The rise in demand for electric and hybrid vehicles, the issue of bearing currents in electric motors has become increasingly relevant. These vehicles use inverters with high frequency switch that generates the common mode voltage and current, the main factor responsible for bearing issues. In the machine structure, there are some parasitic capacitances that exist inherently. They provide a low impedance path for the generated current, which flows through the machine bearing. Investigating this problem in practical scenarios during the design stage is costly and requires great effort to measure these currents. For this reason, a strategy of analysis aided by electromagnetic simulation software can achieve desired results in terms of complexity and performance. This work proposes a methodology using Ansys Maxwell software to simulate two-dimensional (2D) and three-dimensional (3D) model of a three-phase permanent magnet motor with eight poles.
X