Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Stress-Strain Relations for Nodular Cast Irons with Different Graphite Volume Fractions under Tension and Compression

2017-03-28
2017-01-0399
In this paper, the results of finite element analyses for nodular cast irons with different volume fractions of graphite particles based on an axisymmetric unit cell model under uniaxial compression and tension are presented. The experimental compressive stress-strain data for a nodular cast iron with the volume fraction of graphite particles of 4.5% are available for use as the baseline material data. The elastic-plastic stress-strain relation for the matrix of the cast iron is estimated based on the experimental compressive stress-strain curve of the cast iron with the rule of mixture. The elastic-plastic stress-strain relation for graphite particles is obtained from the literature. The compressive stress-strain curve for the cast iron based on the axisymmetric unit cell model with the use of the von Mises yield function was then obtained computationally and compared well with the compressive stress-strain relation obtained from the experiment.
Journal Article

Effects of Non-Associated Flow on Residual Stress Distributions in Crankshaft Sections Modeled as Pressure-Sensitive Materials under Fillet Rolling

2015-04-14
2015-01-0602
In this paper, the evolution equation for the active yield surface during the unloading/reloading process based on the pressure-sensitive Drucker-Prager yield function and a recently developed anisotropic hardening rule with a non-associated flow rule is first presented. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into the commercial finite element program ABAQUS. A two-dimensional plane strain finite element analysis of a crankshaft section under fillet rolling was conducted. After the release of the roller, the magnitude of the compressive residual hoop stress for the material with consideration of pressure sensitivity typically for cast irons is smaller than that without consideration of pressure sensitivity. In addition, the magnitude of the compressive residual hoop stress for the pressure-sensitive material with the non-associated flow rule is smaller than that with the associated flow rule.
Technical Paper

Fuel Economy Improvement Through Frictional Loss Reduction in Light Duty Truck Rear Axle

2002-10-21
2002-01-2821
In an effort to improve fuel economy for light duty trucks, an initiative was undertaken to reduce frictional losses in rear axle through use of low friction lubricants and novel surface finish on gears while maintaining durability. This paper describes the effect of rear axle lubricants on fuel economy. A laboratory rig was set up using a full size pick-up truck rear axle to measure axle efficiency and lubricant temperature with various SAE 75W-90 and SAE 75W-140 viscosity grade lubricants. Traction coefficients of lubricants were also measured at various temperatures using a laboratory ball and disk contact geometry. An improvement in axle efficiency up to 4.3% was observed over current Ford factory fill SAE 75W-140 lubricant depending on speed, torque and the type of lubricant used. The temperature of the lubricants was also lower than that with the current factory fill. This is important for maintaining bearing life and overall durability of the rear axle.
Technical Paper

Sequence VIB Engine Test for Evaluation of Fuel Efficiency of Engine Oils - Part II. Stage Selection and Time Factor Determination

1998-10-19
982624
The newly developed Sequence VIB engine dynamometer test for measuring the ability of engine oils to improve engine fuel efficiency was designed as an improvement on its predecessor, the Sequence VIA test. The Sequence VIB test features an additional, extended oil aging to correspond to aging of engine oils in certification vehicles and in customer use, and a new set of boundary/mixed and hydrodynamic lubrication stages to better represent a wider range of engines. Five fuel economy measurement stages were chosen for the Sequence VIB test from a larger set of prototype stages, based on extensive friction modeling of engines, analysis of Sequence VIA data on reference oils, and operational considerations. Time factors for these stages were derived based on a mini-mapping of engines considering engine operating conditions in the Metro/Highway Federal fuel economy test procedure (FTP M/H) and the estimated market volume of each engine-vehicle.
X