Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Estimation of Mass and Inertia Properties of Human Body Segments for Physics-based Human Modeling and Simulation Applications

This paper describes an effective integrated method for estimation of subject-specific mass, inertia tensor, and center of mass of individual body segments of a digital avatar for use with physics-based digital human modeling simulation environment. One of the main goals of digital human modeling and simulation environments is that a user should be able to change the avatar (from male to female to a child) at any given time. The user should also be able to change the various link dimensions, like lengths of upper and lower arms, lengths of upper and lower legs, etc. These customizations in digital avatar's geometry change the kinematic and dynamic properties of various segments of its body. Hence, the mass and center of mass/inertia data of the segments must be updated before simulating physics-based realistic motions. Most of the current methods use mass and inertia properties calculated from a set of regression equations based on average of some population.
Technical Paper

Dynamic Optimization of Human Stair-Climbing Motion

The objective of this paper is to present our method of predicting and simulating visually realistic and dynamically consistent human stair-climbing motion. The digital human is modeled as a 55-degrees of freedom branched mechanical system with associated human anthropometry-based link lengths, mass moments of inertia, and centers of gravity. The joint angle profiles are determined using a B-spline-based parametric optimization technique subject to different physics-based, task-based, and environment-based constraints. The formulation offers the ability to study effects of the magnitude and location of external forces on the resulting joint angle profiles and joint torque profiles. Several virtual experiments are conducted using this optimization-based approach and results are presented.
Technical Paper

A Fuzzy Synthesis Control Strategy for Active Four-Wheel Steering Based on Multi-Body Models

Active steering systems can help the driver to master critical driving situations. This paper presents a fuzzy logic control strategy on active steering vehicle based on a multi-body vehicle dynamic model. The multi-body vehicle dynamic model using ADAMS can accurately predict the dynamic performance of the vehicle. A new hybrid steering scheme including both active front steering (applying an additional front steering angle besides the driver input) and rear steering is presented to control both yaw velocity and sideslip angle. A set of fuzzy logic rules is designed for the active steering controller, and the fuzzy controller can adjust both sideslip angle and yaw velocity through the co-simulation between ADAMS and the Matlab fuzzy control unit with the optimized membership function. To ensure the design of high-quality fuzzy control rules, a rule optimization strategy is introduced.
Technical Paper

Effect of Restrictive Clothing on Balance and Gait using Motion Capture and Stability Analysis

The effect of restrictive clothing on functional reach and on balance and gait during obstacle crossing of five normal subjects is presented in this work using motion capture and stability analyses. The study has shown that restrictive clothing has considerably reduced participants' functional reach. It also forced the participants to change their motion strategy when they cross-higher obstacles. When crossing higher obstacles, the participants averted their stance foot, abducted their arms, flexed their torso, used longer stance time, and increased their hip angle in the medial-lateral (Rolling) and vertical (Yawing) directions. The stability analysis of a virtual human skeletal model with 18 links and 25 degrees of freedom has shown that participants' stability has become critical when they wear restrictive clothing and when they cross higher obstacles.
Technical Paper

Fatigue of High Strength Bolts Rolled Before or After Heat Treatment with Five Different Preload Levels

SI property class 12.9 high strength steel bolts were used to investigate the fatigue behavior of bolt threads rolled before/after heat treatment using two different thread profiles and five different preload values. Bolts were 3/8 UNRC-16 (coarse) and 3/8 UNRF-24 (fine) and preloads were taken as 1, 50, 75, 90, and 100% of roll before heat treatment proof stress. Maximum near surface residual compressive stresses, obtained via x-ray diffraction, ranged from -500 to -1000 MPa. Axial loads were applied through the nut and all fatigue failures occurred at the first thread of the nut/bolt interface. SEM evaluation indicated all fatigue crack growth regions contained multiple fatigue facets, while final fracture regions were ductile dimples.