Refine Your Search

Topic

Search Results

Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Algorithmic Maintenance of a Diesel Engine Electronic Fuel Feed Controller by Criterion of the Content of Soot in Exhaust Gas

2007-04-16
2007-01-0973
The feature of offered algorithm is that it allows, without record and analysis of the display diagram, to estimate a running cycle of a diesel engine parameters which characterize ecological and economic performances. The mathematical model described in report allows to determine connection of coefficient of filling, pressure and temperature of air boost, factor of excess of air with effectiveness ratio of combustion and contents of soot in exhaust gas and to take into account this connection at a choice initial data for control fuel feed or for elaboration of diesel engine dynamic model. The algorithm incorporated, for example, in the microcontroller of an electronic fuel feed controller allows analyzing the sensors data and theoretically determine of smoke amount in the exhaust gases for chosen cycle of fuel feed. The restriction of smoke is possible by criterion dD/dGT, where D - contents of soot in exhaust gas and GT - fuel cycle submission under the program-adaptive schema.
Technical Paper

Factors Influencing Spark Behavior in a Spray-Guided Direct-Injected Engine

2006-10-16
2006-01-3376
The spark process has previously been shown to heavily influence ignition stability, particularly in direct-injected gasoline engines. Despite this influence, few studies have addressed spark behavior in direct-injected engines. This study examines the role of environmental factors on the behavior of the spark. Through measurement of the spark duration, by way of the ignition current trace, several observations are made on the influence of external factors on the behavior of the spark. Changing the level of nitrogen in the cylinder (to simulate EGR), the level of wetting and velocity imparted by the spray, the ignition dwell time and the orientation of the ground strap, observations are made as to which conditions are likely to produce unfavorable (shorter) spark durations. Through collection of a statistically significant number of sample spark lengths under each condition, histograms have been assembled and compared under each case.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Using Vehicle Dynamics Simulation as a Teaching Tool in Automotive Engineering Courses

2005-04-11
2005-01-1795
Some of the best teaching methods are laboratory courses in which students experience application of the principles being presented. Preparing young engineering students for a career in the automotive industry challenges us to provide comparable opportunities to explore the dynamic performance of motor vehicles in a controlled environment. Today we are fortunate to have accurate and easy-to-use software programs making it practical for students to simulate the performance of motor vehicles on “virtual” proving grounds. At the University of Michigan the CarSim® vehicle dynamics simulation program has been introduced as such a tool to augment the learning experience. The software is used in the Automotive Engineering course to supplement homework exercises analyzing acceleration, braking, aerodynamics, and cornering performance. This paper provides an overview of the use of simulation in this setting.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Effects of Impact Velocity on Crush Behavior of Honeycomb Specimens

2004-03-08
2004-01-0245
Effects of impact velocity on the crush behavior of aluminum 5052-H38 honeycomb specimens are investigated by experiments. An impact test machine using pressurized nitrogen was designed to perform dynamic crush tests. A test fixture was designed such that inclined loads can be applied to honeycomb specimens in dynamic crush tests. The results of dynamic crush tests indicate that the effects of impact velocity on the normal and inclined crush strengths are significant. The trends of the inclined crush strengths for specimens with different in-plane orientation angles as functions of impact velocity are very similar to that of the normal crush strength. Experimental results show similar progressive folding mechanisms for honeycomb specimens under pure compressive and inclined loads. Under inclined loads, the inclined stacking patterns were observed. The inclined stacking patterns are due to the asymmetric locations of the horizontal plastic hinge lines.
Technical Paper

Simulating Complex Manual Handling Motions Via Motion Modification: Performance Evaluation of Motion Modification Algorithm

2003-06-17
2003-01-2227
Simulation of human motions in virtual environments is an essential component of human CAD (Computer-aided Design) systems. In our earlier SAE papers, we introduced a novel motion simulation approach termed Memory-based Motion Simulation (MBMS). MBMS utilizes existing motion databases and predicts novel motions by modifying existing ‘root’ motions through the use of the motion modification algorithm. MBMS overcomes some limitations of existing motion simulation models, as 1) it simulates different types of motions on a single, unified framework, 2) it simulates motions based on alternative movement techniques, and 3) like real humans, it can learn new movement skills continually over time. The current study evaluates the prediction accuracy of MBMS to prove its utility as a predictive tool for computer-aided ergonomics. A total of 627 whole-body one-handed load transfer motions predicted by the algorithm are compared with actual human motions obtained in a motion capture experiment.
Technical Paper

Redesigning Workstations Utilizing Motion Modification Algorithm

2003-06-17
2003-01-2195
Workstation design is one of the most essential components of proactive ergonomics, and digital human models have gained increasing popularity in the analysis and design of current and future workstations (Chaffin 2001). Using digital human technology, it is possible to simulate interactions between humans and current or planned workstations, and conduct quantitative ergonomic analyses based on realistic human postures and motions. Motion capture has served as the primary means by which to acquire and visualize human motions in a digital environment. However, motion capture only provides motions for a specific person performing specific tasks. Albeit useful, at best this allows for the analysis of current or mocked-up workstations only. The ability to subsequently modify these motions is required to efficiently evaluate alternative design possibilities and thus improve design layouts.
Technical Paper

Sensitivity Analysis of Complex Eigensolutions for Brake Noise

2003-05-05
2003-01-1626
When structures may have dynamic instability complex eigenvalue analysis is a useful tool to predict it. Although the accurate prediction itself is significant, it is also crucial to obtain sensitivity of unstable eigensolutions in order to eliminate instability efficiently. Since the mathematical relationship between stiffness matrix and design variables may seldom be found in reality, finite difference method has been typically used to approximate the sensitivity. The novel way to accurately calculate the sensitivity is developed without implementing finite difference method. This paper shows the advantages of analytical sensitivity analysis compared to other methods for choosing the most important components' eigenvalues. It also provides necessary amount of frequency shift for each chosen components' eigenvalue to eliminate unstable eigenvalues.
Technical Paper

Infrared Night Vision Systems and Driver Needs

2003-03-03
2003-01-0293
Night vision enhancement systems (NVES), which use infrared (IR) cameras, are designed to supplement the visibility provided by standard headlamps. There are two main NVES systems: active, near infrared (NIR) systems, which require an IR source but give a complete picture of the scene in front of the driver, and passive, far infrared (FIR) systems, which do not need an IR source but only enhance relatively warm objects (such as people and animals). There are three main display alternatives: a head-up display (HUD) superimposed on the direct view of the road, a HUD just above the dashboard but separated from the direct view, and a conventional display somewhere in the dashboard. This paper analyzes what a NVES should do to improve night visibility based on night crash statistics, driver vision and visibility conditions in night driving, driver tasks and behavior, and the options offered by various technological approaches. Potential problems with using NVES are also discussed.
Technical Paper

Benefits of Applying Adaptive Headlighting to the Current U.S. and European Low-Beam Patterns

2002-03-04
2002-01-0524
This analytical study examined the potential benefits of applying two embodiments of adaptive lighting to the U.S. and European low-beam patterns: curve lighting that involves shifting the beam horizontally into the curve, and motorway lighting that involves shifting the beam vertically upward. The curve lighting simulations paired 240-m radius left and right curves with a horizontal shift of 10°, and 80-m radius curves with a horizontal beam shift of 15°. The motorway lighting simulations involved upward aim shifts of 0.25° and 0.5°. For both curve and motorway lighting, changes in both seeing and glare illuminance were considered. Market-weighted model year 2000 U.S. and European beam patterns were used. We conclude that curve lighting, as simulated here, would substantially improve seeing performance on curves for both types of beams. On right curves (but not on left curves) there would be an increase in disability glare for oncoming traffic.
Technical Paper

Modifying Motions for Avoiding Obstacles

2001-06-26
2001-01-2112
Interference between physical objects in the workspace and the moving human body may cause serious problems, including errors in manual operation, physical damage and trauma from the collision, and increased biomechanical stresses due to movement reorganization for avoiding the obstacles. Therefore, a computer algorithm to detect possible collisions and simulate human motions to avoid obstacles will be an important tool for computer-aided ergonomics and optimization of system design in the early stage of a design process. In the present study, we present a method of modifying motions for obstacle avoidance when the object intrudes near the center of the planned motion. We take the motion modification approach, as we believe that for a certain class of obstacle avoidance problems, a person would modify a pre-planned motion that would result in a collision to a new one that is collision-free, as opposed to organizing a totally unique motion pattern.
Technical Paper

Accounting for Manufacturing Variability in Interior Noise Computations

2001-04-30
2001-01-1527
A formulation that accounts for manufacturing variability in the analysis of structural/acoustic systems is presented. The methodology incorporates the concept of fast probability integration with finite element (FEA) and boundary element analysis (BEA) for producing the probabilistic acoustic response of a structural/acoustic system. The advanced mean value method is used for integrating the system probability density function. FEA and BEA are combined for producing the acoustic response that constitutes the performance function. The probabilistic acoustic response is calculated in terms of a cumulative distribution function. The new methodology is used to illustrate the difference between the results from a probabilistic analysis that accounts for manufacturing uncertainty, and an equivalent deterministic simulation through applications. The probabilistic computations are validated by comparison to Monte Carlo simulations.
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

Experimental Investigation of Plasticized Polyvinylchloride using the Split Hopkinson Pressure Bar Technique

2000-03-06
2000-01-0610
Characterization of materials used in the automotive industry is often done via component testing. A strict regimen of tests is conducted on a component to determine material parameters for numerical simulations of more complicated loading conditions. Separation of material constants and geometrically- or experimentallyinduced effects is difficult with this method of characterization. Well-controlled experiments that determine the material response in basic deformations allow material properties to be determined. In this paper low strain rate and high strain rate experimental responses of dummy skin material (i.e. plasticized polyvinyl chloride) are presented. Details of the experimental procedures used to acquire the data are also included. In addition, a rate-dependent constitutive model for the plasticized material is developed, and its simulated results are compared with low strain rate results.
Technical Paper

An Investigation of Catalytic Converter Performances during Cold Starts

1999-10-25
1999-01-3473
Automotive exhaust emission regulations are becoming progressively stricter due to increasing awareness of the hazardous effects of exhaust emissions. The main challenge to meet the regulations is to reduce the emissions during cold starts, because catalytic converters are ineffective until they reach a light-off temperature. It has been found that 50% to 80% of the regulated hydrocarbon and carbon monoxide emissions are emitted from the automotive tailpipe during the cold starts. Therefore, understanding the catalytic converter characteristics during the cold starts is important for the improvement of the cold start performances This paper describes a mathematical model that simulates transient performances of catalytic converters. The model considers the effect of heat transfer and catalyst chemical reactions as exhaust gases flow through the catalyst. The heat transfer model includes the heat loss by conduction and convection.
Technical Paper

A Field Study of Distance Perception with Large-Radius Convex Rearview Mirrors

1998-02-23
980916
One of the primary reasons that FMVSS 111 currently requires flat rearview mirrors as original equipment on the driver's side of passenger cars is a concern that convex mirrors might reduce safety by causing drivers to overestimate the distances to following vehicles. Several previous studies of the effects of convex rearview mirrors have indicated that they do cause overestimations of distance, but of much lower magnitude than would be expected based on the mirrors' levels of image minification and the resulting visual angles experienced by drivers. Previous studies have investigated mirrors with radiuses of curvature up to 2000 mm. The present empirical study was designed to investigate the effects of mirrors with larger radiuses (up to 8900 mm). Such results are of interest because of the possible use of large radiuses in some aspheric mirror designs, and because of the information they provide about the basic mechanisms by which convex mirrors affect distance perception.
X