Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Design and Optimized Combination of Combustion Modesover Full-Load Range in a Multi-cylinder Light-duty Engine

In order to achieve high efficiency and clean combustion indiesel engines, many advanced combustion concepts have been developed to simultaneously reduce NOx and soot emissions with high efficiency. However, the benefits of these combustion modes are limited to low loads because the energy release ratesaretoo fast at high loads. Recently, Dual-fuel highly premixed charge combustion (HPCC) strategies with the port injection of gasoline and direct injection of diesel have demonstrated advantages in terms of extending the operating range by the flexible control of fuel chemical reactivity and charge stratification. However, the extension to high-load in a turbocharged multi-cylinder diesel engine with the HPCC is a critical challenge due to excessive pressure rise rates. Mean while it suffers from the excessive of CO/HC emissions at low loads.
Technical Paper

Experimental and Modeling Study of Biodiesel Surrogates Combustion in a CI Engine

This work concerns the oxidation of biodiesel surrogates in a CI engine. An experimental study has been carried out in a single-cylinder common-rail CI engine with soybean biodiesel and two biodiesel surrogates containing neat methyl decanoate and methyl decanoate/n-heptane blends. Tests have been conducted with various intake oxygen concentrations ranging from 21% to approximately 9% at intake temperatures of 25°C and 50°C. The results showed that the ignition delay and smoke emissions of neat methyl decanoate were closer to that of soybean biodiesel as compared with methyl decanoate/n-heptane blends. A reduced chemical kinetic mechanism for the oxidation of methyl decanoate has been developed and applied to model internal combustion engines. A KIVA code, coupled with the Chemkin chemistry solver, was used as the computational platforms. The effects of various intake oxygen concentrations on the in-cylinder emissions of OH and soot were discussed.
Technical Paper

Comparison of Diesel Combustion CFD Models and Evaluation of the Effects of Model Constants

This paper describes numerical simulations that compare the performance of two combustion CFD models against experimental data, and evaluates the effects of combustion and spray model constants on the predicted combustion and emissions under various operating conditions. The combustion models include a Characteristic Time Combustion (CTC) model and CHEMKIN with reduced chemistry models integrated in the KIVA-3Vr2 CFD code. The diesel spray process was modeled using an updated version of the KH-RT spray model that features a gas jet submodel to help reduce numerical grid dependencies, and the effects of both the spray and combustion model constants on combustion and emissions were evaluated. In addition, the performance of two soot models was compared, namely a two-step soot model, and a more detailed model that considers soot formation from PAH precursors.
Technical Paper

A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel

Comparisons have been made between dual-fuel (80% port-injection gasoline and 20% direct-injection diesel by mass) Highly Premixed Charge Combustion (HPCC) and blended-fuel (80% gasoline and 20% diesel) Low Temperature Combustion (LTC) modes on a 1-L single-cylinder test engine. In the HPCC mode, both early-injection (E-HPCC) and late-injection (L-HPCC) of diesel have been used. The comparisons have been conducted with a fixed fuel injection rate of 50 mg/cycle at 1500 rpm, and with the combustion phasing fixed (by adjusting the injection timing) so that the 50% heat release point (CA50) is at 8° ATDC. The rapid heat release process of LTC leads to the highest maximum pressure rise rate (MPRR). A two-peak heat release process is observed in L-HPCC, resulting in a lower MPRR. The heat release rate and MPRR values for the E-HPCC are comparable to the L-HPCC values. The EHPCC mode provides the lowest NOX emission. The soot emissions for all three modes are low.