Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Numerical Study of the Effect of Piston Shapes and Fuel Injection Strategies on In-Cylinder Conditions in a PFI/GDI Gasoline Engine

2014-10-13
2014-01-2670
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In order to stabilize the hybrid combustion process, the port fuel injection (PFI) combined with gasoline direct injection (GDI) strategy is proposed in this study to form the in-cylinder fuel stratification to enhance the early flame propagation process and control the auto-ignition combustion process. The effect of bowl piston shapes and fuel injection strategies on the fuel stratification characteristics is investigated in detail using three-dimensional computational fluid dynamics (3-D CFD) simulations. Three bowl piston shapes with different bowl diameters and depths were designed and analyzed as well as the original flat piston in a single cylinder PFI/GDI gasoline engine.
Technical Paper

The Influence of Intake Port and Pent-Roof Structures on Reversed Tumble Generation of a Poppet-Valved Two-Stroke Gasoline Engine

2014-04-01
2014-01-1130
In order to minimize short-circuiting of the intake charge in the poppet-valved 2-stroke engine, measures are taken to generate reversed tumble in the cylinder. In this study, five different types of intake ports and three types of pent-roof geometries were designed and analysed of their ability to generate and maintain reversed tumble flows by means of CFD simulation for their intake processes on a steady flow rig. Their flow characteristics were then assessed and compared to that of the vertical top-entry ports. Results show that the side-entry port designs can achieve comparatively high tumble intensity. The addition of flow deflectors inside the side-entry ports does not have much effect on the reversed tumble ratio. The top-entry ports have the highest flow coefficient among all the intake ports examined as well as producing strong reversed tumble. It is also found that the pent-roof at a wider angle helps to strengthen the tumble intensity due to increased air flow rate.
Technical Paper

Expanding the Low Load Limit of HCCI Combustion Process Using EIVO Strategy in a 4VVAS Gasoline Engine

2012-04-16
2012-01-1121
Homogeneous charge compression ignition (HCCI) technology is promising to reduce engine exhaust emissions and fuel consumption in gasoline engine. However, it is still confronted with the problem of its limited operation range. High load is limited by the tradeoff between the quantity of working charge and dilution charge. Low load is limited by the high residual gas fraction and low temperature in the cylinder. One of the highlights of HCCI combustion research at present is to expand the low load limit of HCCI combustion by developing HCCI idle operation. The main obstacle in developing HCCI idle combustion is too high residual gas fraction and low temperature to misfire in cylinder. This paper relates to a method for achieving the appropriate environment for auto-ignition at idle and the optimal tradeoff between the combustion stability and fuel consumption by employing EIVO valve strategy with an equivalent air-fuel ratio.
X