Refine Your Search

Topic

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

Emission Characteristics of a Light Diesel Engine with PNA under Different Coupling Modes of EHC and Aftertreatment System

2023-04-11
2023-01-0268
With the continuous upgrading of emission regulations, NOx emission limit is becoming more and more strict, especially in the cold start phase. Passive NOx absorber (PNA) can adsorb NOx at a relatively low exhaust temperature, electrically heated catalyst (EHC) has great potential to improve exhaust gas temperature and reduce pollutant emissions of diesel engines at cold start conditions, while experimental research on the combined use of these two kinds of catalysts and the coupling mode of the electrically heated catalyst and the aftertreatment system under the cold start condition are lacking. In this paper, under a certain cold start and medium-high temperature phase, the exhaust gas temperature and emission characteristics of PNA, EHC and aftertreatment system under different coupling modes were studied.
Technical Paper

Layer Coating on DPF for PN Emission Control

2023-04-11
2023-01-0384
China VI emission standards (Limits and measurement methods for emissions from diesel fueled heavy-duty vehicles, China VI, GB17691-2018) have strict particle number (PN) emission standards and so the coated diesel particulate filter (DPF) technology from the EU and US market has challenge in meeting the regulation. Hence, a coated DPF with higher PN filtration efficiency (FE) is required. Currently, there are two approaches. One is from the DPF substrate standpoint by using small pore size DPF substrate. The other is from the coating side to develop a novel coating technology. Through the second approach, a layer coating process has been developed. The coated DPF has an on-wall catalytic layer from inlet side and an in-wall catalytic coating from outlet side. The DPF has improved PN filtration efficiency and can meet China VI regulation without any pre-treatment. It has lowered soot loading back pressure (SLBP), compared to the DPF with small pore size.
Technical Paper

Experimental Study on Effect of State of Charge on Thermal Runaway Characteristics of Commercial Large-Format NCM811 Lithium-Ion Battery

2023-04-11
2023-01-0136
The application of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode-based lithium-ion batteries (LIBs) has alleviated electric vehicle range anxiety. However, the subsequent thermal safety issues limit their market acceptance. A detailed analysis of the failure evolution process for large-format LIBs is necessary to address the thermal safety issue. In this study, prismatic cells with nominal capacities of 144Ah and 125Ah are used to investigate the thermal runaway (TR) characteristics triggered by lateral overheating. Additionally, TR characteristics under two states of charge (SoCs) (100% and 5%) are discussed. Two cells with 100% SoC exhibit similar characteristics, including high failure temperature, high inhomogeneity of temperature distribution, multi-points jet fire, and significant mass loss. Two cells with 5% SoC demonstrate only a slight rupture of the safety valve and the emission of white smoke.
Journal Article

Study on Soot Oxidation Characteristics of Ce and La Modified Pt-Pd CDPF Catalysts

2023-04-11
2023-01-0390
The catalyzed diesel particulate filter with Pt and Pd noble metals as the main loaded active components are widely used in the field of automobile engines, but the high cost makes it face huge challenges. Rare earth element doping can improve the soot oxidation performance of the catalyzed diesel particulate filter and provide a new way to reduce its cost. In this paper, thermogravimetric tests and chemical reaction kinetic calculations were used to explore the effect of Pt-Pd catalysts doped Ce, and La rare earth elements on the oxidation properties of soot. The results shown that, among Pt-Pd-5%Ce, Pt-Pd-5%La, and Pt-Pd-5%Ce-5%La catalysts, Pt-Pd-5%La catalyst has the highest soot conversion, the highest low-temperature oxidation speed, and the activation energy is the smallest. Compared with soot, this catalyst reduced T10 and T20 by 82% and 26%, respectively, meaning the catalytic activity of Pt-Pd-5%La catalyst was the best.
Research Report

Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles

2022-09-26
EPR2022020
Fuel cell electric vehicles (FCEVs) require multiple components to operate properly, and the fuel cell stack—the source of power—is one of the most important components. While the number of enterprises manufacturing and selling fuel cell stacks is increasing globaly year after year, the residual challenges of core components and technologies still need to be resolved in order to keep pace with the development of lithium-ion batteries (i.e., its primary competitor). Additionally, many production and distribution standards are seen as unsettled. These barriers make large-scale commercialization an issue. Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles explores the opportunities and challenges within the PEMFC industry. With the help of expert contributors, a critical overview of fuel cells and the FCEV industry is presented, and core technology, applications, costs, and trends are analyzed.
Technical Paper

Review on Uncertainty Estimation in Deep-Learning-Based Environment Perception of Intelligent Vehicles

2022-06-28
2022-01-7026
Deep neural network models have been widely used for environment perception of intelligent vehicles. However, due to models’ innate probabilistic property, the lack of transparency, and sensitivity to data, perception results have inevitable uncertainties. To compensate for the weakness of probabilistic models, many pieces of research have been proposed to analyze and quantify such uncertainties. For safety-critical intelligent vehicles, the uncertainty analysis of data and models for environment perception is especially important. Uncertainty estimation can be a way to quantify the risk of environment perception. In this regard, it is essential to deliver a comprehensive survey. This work presents a comprehensive overview of uncertainty estimation in deep neural networks for environment perception of intelligent vehicles.
Technical Paper

Effect of Ethanol Reforming Gas Combined with EGR on Lean Combustion Characteristics of Direct Injection Gasoline Engine

2022-03-29
2022-01-0428
Ethanol reforming gas combined with EGR technology can not only improve thermal efficiency, but also reduce pollutant emission under lean combustion condition. In this investigation, GT-Power is used to carry out one-dimensional simulation model calculation and analysis to explore the combustion characteristics, economy performance of a direct injection gasoline engine when the excess air coefficient (λ) increases from 1 to 1.3 and the ethanol reforming gas mixing ratio increases from 0% to 30% at the working condition of 2000 r/min and 10 bar. Then the EGR system is introduced to deeply discuss the working characteristics of the direct injection gasoline engine when the EGR rate increases from 0% to 20%. The results show that the increase of λ leads to the decrease of in-cylinder pressure and the delay of the peak of cylinder pressure.
Journal Article

Performance Optimization Using ANN-SA Approach for VVA System in Diesel Engine

2022-03-29
2022-01-0628
Diesel engine is vital in the industry for its characteristics of low fuel consumption, high-torque, reliability, and durability. Existing diesel engine technology has reached the upper limit. It is difficult to break through the fuel consumption and emission of diesel engines. VVA (Variable Valve Actuation) is a new technology in the field of the diesel engines. In this paper, GT-Suite and ANN (artificial neural network) model are established based on engine experimental data and DoE simulation results. By inputting Intake Valve Opening crake angle (IVO), Intake Valve Angle Multiplier (IVAM) and Exhaust Valve Angle Multiplier (EVAM) into the ANN Model, and by using SA (simulated annealing algorithm), the optimized results of intake and exhaust valve lift under the target conditions are obtained.
Technical Paper

Investigating the Effect of Water and Oxygen Distributions on Consistency of Current Density Using a Quasi-Three-Dimensional Model of a PEM Fuel Cell

2021-04-06
2021-01-0737
Activation loss, mass transfer loss and ohmic loss are the three main voltage losses of the polymer electrolyte membrane fuel cell. While the former two types are relevant to concentration of oxygen in catalyst layer and the later one is associated with the water content in membrane. Distributions of water content and oxygen in a single cell are inconsistent which cause that current densities in each segment of the single cell are different. For the dry inlet gas, the water in the segments near the gas inlet channel will be carried to the segments near the gas outlet channel, which causes high ohmic loss of the segments near the gas inlet channel. In this work, a transfer non-isothermal quasi-three-dimensional model is developed to investigate inconsistency of current densities.
Technical Paper

Study on the Performance-Determining Factors of Commercially Available MEA in PEMFCs

2020-04-14
2020-01-1171
Proton exchange membrane fuel cells (PEMFC), which convert the chemical energy into electrical energy directly through electrochemical reactions, are widely considered as one of the best power sources for new energy vehicles (NEV). Some of the major advantages of a PEMFC include high power density, high energy conversion efficiency, minimum pollution, low noise, fast startup and low operating temperature. The Membrane Electrode Assembly (MEA) is one of the core components of fuel cells, which composes catalyst layers (CL) coated proton exchange membrane (PEM) and gas diffusion layers (GDL). The performance of MEA is closely related to mass transportation and the rate of electrochemical reaction. The MEA plays a key role not only in the performance of the PEMFCs, but also for the reducing the cost of the fuel cells, as well as accelerating the commercial applications. Commercialized large-size MEA directly plays a major role in determining fuel cell stack and vehicle performance.
Technical Paper

Effect of Hydrous Ethanol Combined with EGR on Performance of GDI Engine

2020-04-14
2020-01-0348
In recent years, particulate matters (PM) emissions from gasoline direct injection (GDI) engines have been gradually paid attention to, and the hydrous ethanol has a high oxygen content and a fast burning rate, which can effectively improve the combustion environment. In addition, Exhaust gas recirculation (EGR) can effectively reduce engine NOx emissions, and combining EGR technology with GDI engines is becoming a new research direction. In this study, the effects of hydrous ethanol gasoline blends on the combustion and emission characteristics of GDI engines are analyzed through bench test. The results show that the increase of the proportion of hydrous ethanol can accelerate the burning rate, shorten the combustion duration by 7°crank angle (CA), advance the peak moment of in-cylinder pressure and rate of heat release (RoHR) and improve the combustion efficiency. The hydrous ethanol gasoline blends can effectively improve the gaseous and PM emissions of the GDI engine.
Technical Paper

Characteristics of Transient NOx Emissions of HEV under Real Road Driving

2020-04-14
2020-01-0380
To meet the request of China National 6b emission regulations which will be officially implemented in China, firstly including the RDE emission test limits, the transient emissions on real road condition are paid more attention. A non-plug-in hybrid light-duty gasoline vehicles (HEV) sold in the Chinese market was selected to study real road emissions employed fast response NOx analyzer from Cambustion Ltd. with a sampling frequency of 100Hz, which can measure the missing NO peaks by standard RDE gas analyzer now. Emissions from PEMS were also recorded and compared with the results from fast response NOx analyzer. The concentration of NOx emissions before and after the Three Way Catalyst (TWC) of the hybrid vehicle were also sampled and analyzed, and the working efficiency of the TWC in real road driving process was investigated.
Technical Paper

Combined Technologies for Efficiency Improvement on a 1.0 L Turbocharged GDI Engine

2019-04-02
2019-01-0233
The CO2 reduction request for automotive industry promotes the efforts on the engine thermal efficiency improvement. The goal of this research is to improve the thermal efficiency on an extremely downsized 3-cylinder 1.0 L turbocharged gasoline direct injection engine. Effects of compression ratio, exhaust gas recirculation (EGR), valve timing and viscosity of oil on fuel economy were studied. The results show that increasing compression ratio, from 9.6 to 12, can improve fuel economy at relative low load (below 12 bar BMEP), but has a negative effect at high load due to increased knock intensity. EGR can significantly reduce the pumping loss at low load, optimize combustion phase and reduce exhaust gas temperature. Therefore, the fuel consumption is reduced at all test points. The average brake thermal efficiency (BTE) benefit percentage is 3.47% with 9.6 compression ratio and 5.33 % with 12 compression ratio.
Technical Paper

The Emission of a Diesel Engine in Different Coolant Temperature during Cold Start at High Altitude

2019-04-02
2019-01-0730
Emissions of diesel engine have been received much more attention since the Volkswagen Emission Scandal. The Euro VI emission standard has already included cold start emissions in the legislative emission driving cycles which is one of the hardest part of emission control. High altitude performance is also considered in the latest regulations which will be stricter in the future. Heating the coolant is one of the most common method to improve the cold start performance. But researches focus on the emission of a diesel engine in different coolant temperature at high altitude which up to 4500m have not been seen. The present research investigated the effect of coolant temperature on performance and exhaust emissions (gaseous and particulate emissions) during the cold start of a diesel engine. A plateau simulation system controlled the inlet and exhaust pressure to create altitude environments from 0m to 4500m, and the coolant temperature was controlled from 20°C to 60°C.
Technical Paper

DC/DC Modeling and Current Harmonic Analysis in Fuel Cell Hybrid Power System

2019-04-02
2019-01-0375
Fuel cells directly convert the energy stored in hydrogen into electrical energy through an electrochemical reaction, and the only reaction product is water, which can improve the energy efficiency and reduce the pollution caused by fossil fuels. The fuel cell hybrid power system used in vehicles usually consists of a fuel cell stack and a power battery module, and the DC/DC converter is the key component to connect them together. The current ripples caused by the system have been confirmed to have detrimental effects on the fuel cell’s reliability and lifespan. In addition, it is one of the key factors that reduce the system efficiency. So, it is necessary to analyze the current ripple in the system and maintain it at a low level. In this paper, a brief review on the different kinds of converters used in vehicles has been made. Then, with the help of MATLAB/SIMULINK, a simulation model of the hybrid power system based on 4-phase interleaved parallel topology is established.
Technical Paper

State-of-the-Art and Development Trends of Energy Management Strategies for Intelligent and Connected New Energy Vehicles: A Review

2019-04-02
2019-01-1216
Intelligent and connected vehicle (ICV) and new energy vehicle (NEV) will be two important directions of the automotive technology in the future, and the coordinated development of these two directions reflects relevantly the higher requirements put forward by nowadays society and people. Through the use of intelligent and connected technology (ICT), NEVs can exchange various traffic information data with the outside world (e.g. other running vehicles, road infrastructure, internet, etc.) in real time, which is so-called Vehicle to Everything (V2X). Based on the further analysis of the mutual traffic information, the vehicles can identify the current driving conditions and predict the future driving conditions effectively, which can realize the real time optimization of the energy management strategies (EMSs) of vehicles’ powertrain system, so as to meet the driving requirements of vehicles under different driving conditions.
Technical Paper

Effects of Zeolite Structure, Cu Content, Feed Gas Space Velocity, NH3/NOx Ratio, and Sulfur Poisoning on the Performance of Zeolite-Based SCR Catalyst

2019-04-02
2019-01-0736
To meet the increasingly stringent nitrogen oxides (NOx) emission regulations of diesel engines, the selective catalytic reduction (SCR) of NOx with ammonia (NH3) has become the current mainstream technical route. Experiments in the present study included the performance of Cu-Beta catalyst and Cu-CHA catalyst before and after hydrothermal aging, and the effects of Cu content, feed gas space velocity (GHSV), NH3/NOx ratio, and sulfur poisoning on the performance of Cu-CHA catalyst. In the low temperature range (T≤250 °C), the T50 and T90 of Cu-Beta catalyst are 139 °C and 165 °C, respectively, while those of Cu-CHA catalyst are 150 °C and 183 °C, respectively. In the high temperature range (T>400 °C), the NOx conversion of Cu-CHA catalyst is generally higher than that of Cu-Beta catalyst. The temperature window of Cu-Beta catalyst is 154 to 514 °C, while that of Cu-CHA catalyst is 168 to 522 °C. Cu-CHA catalyst exhibits better catalytic activity at medium and high temperatures.
Technical Paper

Effects of DOC and CDPF Catalyst Composition on Emission Characteristics of Light-Duty Diesel Engine with DOC + CDPF + SCR System

2018-04-03
2018-01-0337
With regulatory standards for diesel engine emissions becoming stricter worldwide, integrated catalytic systems are becoming increasingly necessary. One of the better approaches is to use an after-treatment system consisting of a diesel oxidation catalyst (DOC), a catalyzed diesel particulate filter (CDPF), and a selective catalytic reduction (SCR), but many factors can affect how well this system works. This study investigates the effects of DOC and CDPF catalyst composition on emissions characteristics for DOC + CDPF + SCR systems by collecting reactor and engine data. The reactor results show that the light-off temperatures (T50) of CO and C3H6 increase with the growth of Pt:Pd ratio while the T50 of NO degrades. An engine dynamometer test was conducted on a light-duty diesel engine equipped with DOC + CDPF + SCR. The results show light-off curves of CO and THC that are smoother than the reactor data.
Technical Paper

Study on Correlation between After-Treatment Performance and Running Conditions, Exhaust Parameters of Heavy-Duty Diesel Vehicle

2018-04-03
2018-01-0338
The increasingly stringent emission regulations have mandated the use of CCRT (catalyzed continuously regeneration trap) made by upstream DOC (diesel oxidation catalyst) and downstream CDPF (catalyzed diesel particulate filter) for heavy-duty diesel vehicles, which is proved to be the only way that can efficiently control the gaseous and particulate emissions. The performance of after-treatment is greatly influenced by the running conditions of the diesel vehicle and its exhaust parameters, so this paper intended to use grey relational analysis to study the correlation between running conditions (velocity, acceleration, VSP (vehicle specific power)), exhaust parameters (exhaust flow rate, DOC inlet temperature, concentrations of CO, THC, O2 and NOX) and the performance of DOC and CCRT based on chassis dynamometer test. Results showed that the effect of DOC on CO and THC is mainly affected by exhaust flow rate, exhaust temperature and THC concentration.
X