Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

An Outer Loop of Trajectory and an Inner Loop of Steering Angle for Trajectory Tracking Control of Automatic Lane Change System

2019-11-04
2019-01-5029
Automatic Lane Change (ALC) function is an important step to promote the currently popular Advanced Driver Assistance Systems (ADAS) within a single lane. The key issue for ALC is accurate steering angle and trajectory tracking during the lane changing process. In this paper, an MPC controller with a receding horizon is designed to track the desired trajectory. During the tracking process, other objectives such as safety and smoothness are considered. Considering of the practical mechanism and parameter uncertainties, an SMC controller is designed to track the target steering angle. For validation, a Hardware-in-the-Loop (HIL) experiment platform is established, and experiments of different control algorithms under different conditions are carried out successively. Comparisons of the experiment results of MPC+SMC and PID+SMC schemes indicate that both the trajectory error and the steering angle error of the former combination are smaller.
Technical Paper

Proton Exchange Membrane Fuel Cell Fault Rapid Diagnosis Method Based on Electrochemical Impedance Spectroscopy and Fuzzy C-Means Algorithm

2019-11-04
2019-01-5032
Water management is a key research direction for the performance and lifetime of proton exchange membrane fuel cell (PEMFC) stacks. The paper is aimed to develop an online fault diagnosis method that distinguishes different degrees of flooding and drying within a fuel cell stack by unobservable variables. In our research, the equivalent circuit model is established and electrochemical impedance spectroscopy (EIS) is utilized. The mathematical methods are used to extract the fault features. Fuzzy C-means is used to classify the selected features and the diagnostic rules are automatically extracted from the data. Through verification, the interpretability and computational efficiency of the proposed method are achieved.
Technical Paper

Analysis of the Driver’s Breaking Response in the Safety Cut-in Scenario Based on Naturalistic Driving

2019-11-04
2019-01-5053
For the personification of automotive vehicle function performance under common traffic scenarios, analysis of human driver behavior is necessary. Based on China Field Operational Test (China-FOT) database of China Natural Driving Study project, this paper studies the driver's response in the common cut-in scenario. A total of 266 cut-in cases are selected by manual interception of driving recorder video. The relevant traffic environment characteristics are also extracted from video, including light conditions, road conditions, scale and lateral position of cut-in vehicle, etc. Dynamic information is decoded form CAN, such as speed, acceleration and so on. Then image processing results, such as relative speed and distance of cut-in and subject vehicles, are calculated. Statistical results based on above information show the response type and distribution of human driver: the behavior of keeping lane is 96.24%, in which the ratio of braking response is 51.13%.
Technical Paper

Composite Steering Strategy for 4WS-4WD EV Based on Low-Speed Steering Maneuverability

2019-11-04
2019-01-5052
A composite steering control strategy, which combines four-wheel steering (4WS) and differential steering, is proposed in this paper, to optimize steering maneuverability in the conditions where the vehicle speed is below 15 Km/h, mainly for U-turning and parking conditions. A dynamic model is developed for the steering system and the tire system. Taking different steering wheel inputs into consideration, a 4WS control strategy proportional to the front wheel steering angle is quoted to improve the steering maneuverability in the low speed conditions and guarantee the manipulability by controlling the side slip of the vehicle. Based on the 4WS system, this paper explores the possibility of further improving the low-speed maneuverability of the vehicle through differential steering. And the differential steering control strategy is developed, including four hub-motor output modes. A composite steering controller is designed based on the 4WS-4WD electric vehicle platform.
Technical Paper

Towards High Accuracy Parking Slot Detection for Automated Valet Parking System

2019-11-04
2019-01-5061
Highly accurate parking slot detection methods are crucial for Automated Valet Parking (AVP) systems, to meet their demanding safety and functional requirements. While previous efforts have mostly focused on the algorithms’ capabilities to detect different types of slots under varying conditions, i.e. the detection rate, their accuracy has received little attention at this time. This paper highlights the importance of trustworthy slot detection methods, which address both the detection rate and the detection accuracy. To achieve this goal, an accurate slot detection method and a reliable ground-truth slot measurement method have been proposed in this paper. First, based on a 2D laser range finder, datapoints of obstacle vehicles on both sides of a slot have been collected and preprocessed. Second, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm has been improved to efficiently cluster these unevenly-distributed datapoints.
Technical Paper

Virtual Co-Simulation Platform for Test and Validation of ADAS and Autonomous Driving

2019-11-04
2019-01-5040
Vehicles equipped with one or several functions of Advanced Driver Assistant System (ADAS) and autonomous driving (AD) technology are more mature and prevalent nowadays. Vehicles being smarter and driving being easier is an unstoppable trend. In the near future, intelligent vehicles will be mass produced and running on the road. However, before the mass-production of intelligent vehicles, a lot of experimental tests and validations need to be carried out to insure the safety and reliability of ADAS and AD technology. Although the road test of real vehicles is the most reliable and accurate test method, it cannot meet the need of rapid development of technology research due to high time and financial cost. Therefore, a high-efficient design and evaluation methodology for ADAS and AD development and test is a must. In this paper, a virtual co-simulation platform based on MATLAB/Simulink, OpenModelica and Unity 3D game engine (MOMU) is proposed.
Technical Paper

Parameter Identification for One-Dimension Fuel Cell Model Using GA-PSO Algorithm

2019-11-04
2019-01-5041
When studying on how to identify the proton exchange membrane fuel cell model parameters accurately and quickly, the model frequently used is a lumped parameter model. Compared to this kind of model, one-dimensional dynamic proton exchange membrane fuel cell model can correlate the physical parameters with output characteristics of fuel cell to predict the effects of design parameters, materials and environmental conditions, thus reducing the need for experimentation. However, there is little literature about parameter identification for one-dimensional dynamic models currently. In this paper, a one-dimension dynamic proton exchange membrane fuel cell model with many assumptions for reducing the complexity of calculation is realized in Matlab-Simulink environment. The model consists of five interacting subsystems.
Technical Paper

Study on Air Pressure-Flow Decoupling Control in Fuel Cell System Based on Feedforward Algorithm

2019-11-04
2019-01-5042
Proton exchange membrane fuel cell (PEMFC) system is considered to be one of the ideal replacement for conventional Internal Combustion Engines (ICE) due to its zero emission, low operating temperature and high power density. The high-pressure PEMFC system has become the future development direction because the higher gas pressure can effectively improve the performance and power density of stack. However, the high gas pressure can lead to the damage of membrane electrode assembly (MEA) and even the failure of fuel cell stack. As the air supply system is a nonlinear system, the flow and pressure have a strong coupling relation. For this problem, firstly, the mathematical model of air supply system is established in MATLAB/Simulink. Then a dual-loop control strategy is used in controller.
Technical Paper

Durability Performance of Polymer Electrolyte Membrane Fuel Cells under Open-Circuit Voltage

2019-11-04
2019-01-5076
Polymer electrolyte membrane fuel cells (PEMFCs) are a good candidate for fuel cell electric vehicles (FCEVs) due to their high efficiency, high power density and zero-emission. However, the lifetime is one of the main barriers to overcome before their commercialization. The durability testing methods for PEMFCs are main include electrocatalyst cycle, catalyst support cycle, membrane electrode assembly (MEA) chemical stability, membrane mechanical cycle and so on. In addition, there is little research about MEA chemical stability test, which applies a continuous open-circuit voltage (OCV) to produce more free radicals and these will have a bad influence on PEMFCs. Based on this, the durability of PEMFC was studied under OCV operation at 30% relative humidity (RH), 90 °C and 150 kPa inlet pressure. The electrochemical performances such as in-situ cyclic voltammetry (CV), linear sweep voltage (LSV) and cell polarization were used to evaluate the durability of PEMFC.
Technical Paper

Improved Kmeans Algorithm for Detection in Traffic Scenarios

2019-06-17
2019-01-5067
In the Kmeans cluster segmentation used in traffic scenes, there are often zone optimization and over-segmentation problems caused by the algorithm randomly assigning the initial cluster center. In order to improve the target extraction effect in traffic road scenes, this article proposes an improved Kmeans (IM-Kmeans) method. Firstly, search for the histogram peaks of the whole pixels based on hue, saturation, value (HSV) image, and find the initial cluster centers’ positions and number. Secondly, the noise points which are far away from the center pixel are removed, and then the pixels are classified into the nearest cluster center according to its value. Finally, after the clustering model reaches convergence, the area-clustering method is used for another classification to solve the over-segmentation problem. The simulation and experimental comparisons show that the IM-Kmeans algorithm has higher clustering accuracy than the traditional Kmeans algorithm.
Technical Paper

Performance Testing and Analysis of Multi-Channel Active Control System for Vehicle Interior Noise Using Adaptive Notch Filter

2019-06-05
2019-01-1567
It is considered that slow convergence speed and large calculation amount of commonly used adaptive algorithm in the active control system for vehicle interior noise yield noise reduction performance and hardware requirements problems. In this paper, a 4-channel active control of vehicle interior noise based on adaptive notch filter is established, and road test is carried out to test and analyze the performance of the control system. Firstly, the general mathematic model of the multi-channel active control system based on adaptive notch filter is established. The computational complexity of the algorithm is analyzed and compared with that of the FXLMS algorithm. Secondly, a hardware-in-the-loop test bench based on multi-channel adaptive notch filter is set up, to measure the noise reduction performance of ANC system under various working conditions.
Technical Paper

Combined Technologies for Efficiency Improvement on a 1.0 L Turbocharged GDI Engine

2019-04-02
2019-01-0233
The CO2 reduction request for automotive industry promotes the efforts on the engine thermal efficiency improvement. The goal of this research is to improve the thermal efficiency on an extremely downsized 3-cylinder 1.0 L turbocharged gasoline direct injection engine. Effects of compression ratio, exhaust gas recirculation (EGR), valve timing and viscosity of oil on fuel economy were studied. The results show that increasing compression ratio, from 9.6 to 12, can improve fuel economy at relative low load (below 12 bar BMEP), but has a negative effect at high load due to increased knock intensity. EGR can significantly reduce the pumping loss at low load, optimize combustion phase and reduce exhaust gas temperature. Therefore, the fuel consumption is reduced at all test points. The average brake thermal efficiency (BTE) benefit percentage is 3.47% with 9.6 compression ratio and 5.33 % with 12 compression ratio.
Technical Paper

Simulation Investigation of Working Process and Emissions on GDI Engine Fueled with Hydrous Ethanol Gasoline Blends

2019-04-02
2019-01-0219
Compared with ordinary gasoline, using ethanol gasoline blends as fuel of Internal Combustion Engine is beneficial for the performance of power, economy and emission of engine. However, the fuel ethanol blended in ethanol gasoline blends currently is usually anhydrous ethanol, which requires dewatering implementer in production process, and the cost is high. Therefore, the production cost can be significantly reduced by replacement of anhydrous ethanol with hydrous ethanol while exerting the advantage of ethanol gasoline blends. In this study, computation fluid dynamics (CFD) software CONVERGE is employed to establish a simulation model of an actual gasoline direct injection (GDI) engine, and investigate the effect of burning hydrous ethanol gasoline blends and different injection strategy on combustion process and emission, and the validity of the model was validated by experiments.
Technical Paper

Numerical Study of Intake Manifold Water Injection on Characteristics of Combustion and Emissions in a Heavy-Duty Natural Gas Engine

2019-04-02
2019-01-0562
The performances of heavy-duty natural gas engines have been limited by combustion temperature and NOx emissions for a long time. Recently, water injection technology has been widely considered as a technical solution in reducing fuel consumption and emissions simultaneously in both gasoline and diesel engines. This paper focuses on the impacts of intake manifold water injection on characteristics of combustion and emissions in a natural gas heavy-duty engine through numerical methods. A computational model was setup and validated with experimental data of pressure traces in a CFD software coupled with detailed chemical kinetics. The simulation was mainly carried out in low-speed and full-load conditions, and knock level was also measured and calculated by maximum amplitude of pressure oscillations (MAPO).
Technical Paper

Pressure Estimation Algorithms in Decoupled Electro-Hydraulic Brake System Considering the Friction and Pressure-Position Relationship

2019-04-02
2019-01-0438
This paper presents several pressure estimation algorithms (PEAs) for a decoupled electro-hydraulic brake system (EHB), which is driven by an electric motor + reduction gear. Most of the pressure control solutions are based on standard pressure-based feedback control, requiring a pressure signal. Although the pressure sensor can produce the pressure feedback signal, it will increase cost and enlarge installation space. The rotation angle of electric motor is available by the built-in sensor, so the pressure can be estimated by using the rotation angle. Considering the typical nonlinearities (i.e. friction, pressure-position relationship) and uncertainties (i.e. disturbance caused by friction model), the estimation-oriented model is established. The LuGre model is selected to describe the friction, and the pressure-position relationship is fitted by a quadratic polynomial.
Technical Paper

Model-Based Pitch Control for Distributed Drive Electric Vehicle

2019-04-02
2019-01-0451
On the dual-motor electric vehicle, which is driven by two electric motors mounted on the front and rear axles respectively, longitudinal dynamic control and electro-dynamic braking can be achieved by controlling the torque of front and rear axle motors respectively. Suspension displacement is related to the wheel torque, thus the pitch of vehicle body can be influenced by changing the torque distribution ratio. The pitch of the body has a great influence on the vehicle comfort, which occurs mainly during acceleration and braking progress. Traditionally active suspension is adopted to control the pitch of body. Instead, in this paper an ideal torque distribution strategy is developed to limit the pitch during acceleration and braking progress. This paper first explores the relationship between the torque distribution and the body pitch through the real vehicle test, which reveals the feasibility of the vehicle comfort promotion by optimizing the torque distribution coefficient.
Technical Paper

Real-Time Testing Technology of Powertrain System in Proton Exchange Membrane Fuel Cell Electric Vehicles: A Review

2019-04-02
2019-01-0371
The proton exchange membrane fuel cell (PEMFC) vehicle is one kind of new energy vehicle with fuel cell as power source, which has environmental friendliness, high power density and quick refueling. However, the productlization testing in powertrain system, especially for subsystems and key parts, is one of the critical technical challenges, which restricts the industry development and large-scale commercialization of fuel cell electric vehicles (FCEVs). In this paper, comprehensive testing requirement and latest testing technologies were reviewed, the development status and directions of testing technologies in FCEV powertrain system were presented. Based on comprehensive analysis, X-in-the-Loop (XiL) testing technology was proposed, and it is quite helpful to improve Real-time testing performance and functions for FCEV powertrain system. Furthermore, real-time and reliability as the two key factors for the XiL application was deeply analyzed and discussed.
Technical Paper

DC/DC Modeling and Current Harmonic Analysis in Fuel Cell Hybrid Power System

2019-04-02
2019-01-0375
Fuel cells directly convert the energy stored in hydrogen into electrical energy through an electrochemical reaction, and the only reaction product is water, which can improve the energy efficiency and reduce the pollution caused by fossil fuels. The fuel cell hybrid power system used in vehicles usually consists of a fuel cell stack and a power battery module, and the DC/DC converter is the key component to connect them together. The current ripples caused by the system have been confirmed to have detrimental effects on the fuel cell’s reliability and lifespan. In addition, it is one of the key factors that reduce the system efficiency. So, it is necessary to analyze the current ripple in the system and maintain it at a low level. In this paper, a brief review on the different kinds of converters used in vehicles has been made. Then, with the help of MATLAB/SIMULINK, a simulation model of the hybrid power system based on 4-phase interleaved parallel topology is established.
Technical Paper

Numerical Analysis and Optimization Design of a Centrifugal Compressor’s Volute for PEM Fuel Cell Vehicle

2019-04-02
2019-01-0376
Centrifugal compressors used in polymer electrolyte membrane fuel cell systems are different from turbochargers in internal combustion engines, because they are required to work at high speed, low mass flow rate, narrow range which nears surge boundaries. In order to meet these requirements, a centrifugal compressor’s volute is designed, analyzed and optimized on its cross-section area, shape of volute tongue and tapered angle of exit. The numerical results show that surge boundary of the compressor is influenced by spiral area significantly and that volute tongue has a major impact on aerodynamic performances at high mass flow rates.
Technical Paper

Voltage and Voltage Consistency Attenuation Law of the Fuel Cell Stack Based on the Durability Cycle Condition

2019-04-02
2019-01-0386
Based on the durability cycle test of fuel cell stack and the characteristics of cyclic working conditions, this paper defines the characteristic current point and studies the attenuation rule of the fuel cell stack voltage over time under the characteristic current point. The results show that the voltage of the fuel cell stack appears to be linear downward under the characteristic current point. and the voltage attenuation rate of the fuel cell stack increases quadratically with the increase of the current density in addition to the open-circuit voltage point. Then the coefficient of variation is introduced in statistics as the index to characterize the voltage consistency attenuation of the fuel cell stack, and its variation rule is explored. The results show that the voltage consistency of vehicle fuel cell stack decreases seriously with the increase of running time under the condition of durable cycling.
X