Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Thermal Management of a Hybrid Vehicle Using a Heat Pump

2019-04-02
2019-01-0502
This paper presents the thermal management of a hybrid vehicle (HV) by using a heat pump system in cold weather. The advantage of an HV is a high efficiency of the vehicle system since an electric motor and an engine are coupled and optimally controlled. However, in the conventional HV, we see the fuel economy degradation in cold weather because delivering heat to the passenger cabin by using an engine results in a low efficiency of the vehicle system. To improve the fuel economy degradation, in this study, a heat pump is used and combined with an engine for the thermal management. The heat pump with an electrically driven compressor pumps heat from ambient into a water-cooled condenser. The heat which is generated by the engine and the heat pump is delivered to the engine and the passenger cabin because the engine needs to warm up quickly to reduce the emission and the cabin needs heat for thermal comfort.
Technical Paper

Research of Knocking Deterioration due to Accumulated Carbon Deposits on Piston Surfaces

2019-04-02
2019-01-1141
In recent years, fuel economy regulation is expanding to reduce CO2 emission and energy saving in world wide. To achieve the regulation, automaker efforts to develop electrification technology and improve engine thermal efficiency with high compression ratio. On the other hand, variety of fuels such as a reformed gasoline and bio fuel share is growing rapidly to utilize of fossil fuel by legal arrangements. With the spread of reformed gasoline, there are some risk of increased carbon deposit and accumulated on piston surface, due to heavy aromatic and olefin in the fuel. In combustion point of view, knocking should be deteriorated by synergy effect both accumulated carbon deposit and said high compression ratio. Furthermore, knocking deterioration do not occur in regularly, especially they occur in low-middle engine load. However, this mechanism is not clear.
Technical Paper

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs. The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Technical Paper

Development of Low Pressure and High Performance GPF Catalyst

2018-04-03
2018-01-1261
Awareness of environmental protection with respect to the particulate number (PN) in the exhaust emissions of gasoline direct injection (GDI) engine vehicles has increased. In order to decrease the emission of particulate matter (PM), suppressing emissions by improving engine combustion, and/or filtering PM with a gasoline particulate filter (GPF) is effective. This paper describes the improvement of the coated GPF to reduce pressure drop while securing three-way performance and PN filtration efficiency. It was necessary to load a certain amount of washcoat on the GPF to add the three-way function, but this led to an increase in pressure drop that affected engine power. The pressure drop was influenced by the gas permeation properties of the filter wall.
Journal Article

A Study on Optimal Powertrain Sizing of Plugin Hybrid Vehicles for Minimizing Criteria Emissions Associated with Cold Starts

2018-04-03
2018-01-0406
Plugin hybrid electric vehicles (PHEVs) have several attractive features in terms of reduction of greenhouse gas (GHG) emissions. Compared to conventional vehicles (CVs) that only have an internal combustion engine (ICE), PHEVs have better energy efficiency like regular hybrids (HEVs), allow for electrifying an appreciable portion of traveled miles, and have no range anxiety issues like battery-only electric vehicles (BEVs). However, in terms of criteria emissions (e.g., NOx, NMOG, HC), it is unclear if PHEVs are any better than HEVs or CVs. Unlike GHG emissions, criteria emissions are not continuously emitted in proportional quantities to fossil fuel consumption. Rather, the amount and type of criteria emissions is a rather complex function of many factors, including type of fuel, ICE temperature, speed and torque, catalyst temperature, as well as the ICE controls (e.g., fuel-to-air ratio, valve and ignition timing).
Technical Paper

The Effect of Gasoline Metallic Additives on Low Speed Pre-Ignition

2018-04-03
2018-01-0936
Methylcyclopentadienyl manganese tricarbonyl (MMT) is used as an octane-enhancing metallic additive for unleaded gasoline which can prevent engine knock by proactive reaction with the hydrocarbon free radicals before starting the auto-ignition of hydrocarbons. However it has been pointed out that MMT causes automotive catalysts clogging and spark plug severely fouling. Therefore, many countries have fuel standards that prohibit or limit the usage of MMT. Nevertheless, some countries still use MMT as there are no restrictions imposed by fuel standards. As mentioned in several papers, metallic additives of engine oil such as calcium cause an abnormal combustion phenomenon called low-speed pre-ignition (LSPI) in turbocharged spark ignition engines. In contrast, the effect of metallic additives of gasoline such as MMT on LSPI has not been studied.
Technical Paper

New 2.0L I4 Gasoline Direct Injection Engine with Toyota New Global Architecture Concept

2018-04-03
2018-01-0370
Toyota Motor Corporation has developed a new 2.0L Inline 4- Cylinder (I4) Gasoline Direct Injection Engine, the second Naturally Aspirated (NA) engine of the Toyota New Global Architecture (TNGA) engine series, to meet our customers’ expectations for drivability, performance, and fuel economy. The high speed combustion technologies adopted previously in our 2.5 L NA conventional and Hybrid Vehicle (HV) engines for the 2018 Toyota Camry are necessary for high engine power and thermal efficiency. To adopt our high speed combustion technology on engines with different displacements, the turbulence intensity has been defined as the target index of combustion speed. The basic engine structure has been revised by using Computational Fluid Dynamics (CFD) analysis to achieve the combustion target.
Journal Article

Development of Engine Lubrication System with New Internal Gear Fully Variable Discharge Oil Pump

2017-10-08
2017-01-2431
Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
Technical Paper

New Exhaust Emission Control System with Two A/F Sensors

2017-03-28
2017-01-0917
Exhaust systems must satisfy a wide range of requirements, including lowering emissions to comply with future fuel economy and emissions regulations. To help meet these requirements, new emissions control systems have been developed today. In addition, since air-fuel ratio (hereafter, A/F) control has a major impact on emissions, a new two-A/F sensor system with A/F sensors provided both upstream and downstream of the catalyst was developed, incorporating an A/F control capable of further lowering emissions with greater robustness. This development identified the hysteresis characteristics of the O2 sensor downstream of the catalyst as an important factor affecting emissions during conventional A/F control. Subsequently, reaction analysis was carried out using sensor reaction models and by evaluating sensors under real-world operating conditions.
Technical Paper

New Combustion and Powertrain Control Technologies for Fun-to-Drive Dynamic Performance and Better Fuel Economy

2017-03-28
2017-01-0589
Toyota Motor Corporation has developed a new series of engines under the Toyota New Global Architecture (TNGA) design philosophy, which aims to satisfy customer requirements for both fun-to-drive dynamic performance and better fuel economy by adopting a high-speed combustion concept to improve thermal efficiency and specific power. This new engine series achieves a maximum engine thermal efficiency of 40%, a specific power ratio of 60 kW/l, and lower emissions by combining high-speed combustion and a high compression ratio with a high-tumble intake port, high-energy ignition coil, high-pressure multi-hole nozzle direct injector, and new electrical variable valve timing (VVT). The first engine in this series is a new 4-cylinder 2.5-liter gasoline naturally aspirated engine for use in passenger cars alongside a new TNGA 8-speed automatic transmission, which was introduced for minivans and SUVs in the U.S. market in 2016.
Journal Article

An Application of a Model-Prediction-Based Reference Modification Algorithm to Engine Air Path Control

2017-03-28
2017-01-0586
In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits. Hence, it is quite beneficial to cultivate RG methodologies to deal with multiple references and constraints.
Journal Article

Theoretical Study on Spray Design for Small-Bore Diesel Engine (Second Report)

2017-03-28
2017-01-0704
Generally, soot emissions increase in diesel engines with smaller bore sizes due to larger spray impingement on the cavity wall at a constant specific output power. The objective of this study is to clarify the constraints for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes. The first report applied the geometrical similarity concept to two engines with different bore sizes and similar piston cavity shapes. The smaller engine emitted more smoke because air entrainment decreases due to the narrower spray angle. A new spray design method called spray characteristics similarity was proposed to suppress soot emissions. However, a smaller nozzle diameter and a larger number of nozzle holes are required to maintain the same spray characteristics (such as specific air-entrainment and penetration) when the bore size decreases.
Technical Paper

Analysis for Vibration Caused by Starter Shaft Resonance

2016-04-05
2016-01-1319
It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration using virtual engine specifications and a virtual vehicle frame. In our former study, we showed the 1D physical power plant model with electrical starter, battery that can predict combustion transient torque, combustion heat energy and fuel efficiency. The simulation result agreed with measured data. For idling stop system, the noise and vibration during start up is important factor for salability of the vehicle. In this paper, as an application of the 1D physical power plant model (engine model), we will show the result of analysis that is starter shaft resonance and the effect on the engine mount vibration of restarting from idle stop. First, an engine model for 3.5L 6cyl NA engine was developed by energy-based model using VHDL-AMS. Here, VHDL-AMS is modeling language registered in IEC international standard (IEC61691-6) to realize multi physics on 1D simulation.
Technical Paper

The New Toyota Inline 4 Cylinder 1.8L ESTEC 2ZR-FXE Gasoline Engine for Hybrid Car

2016-04-05
2016-01-0684
The engine in the new fourth generation Prius carries over the same basic structure as the 2ZR-FXE used in the third generation and incorporates various refinements to enhance fuel efficiency. Called the ESTEC 2ZR-FXE, the new engine incorporates various fuel efficient technologies to improve combustion characteristics, knocking, and heat management, while also reducing friction. As a result of this meticulous approach to enhancing fuel efficiency, the new engine is the first gasoline engine in the world to achieve a maximum thermal efficiency of 40%. This paper describes the fuel efficient technologies incorporated into this engine.
Technical Paper

Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept

2016-04-05
2016-01-0675
To improve the thermal efficiency of an internal combustion engine, the application of ceramics to heat loss reduction in the cylinders has been studied [1-2]. The approach taken has focused on the low heat conductivity and high heat resistance of the ceramic. However, since the heat capacity of the ceramic is so large, there is a problem in that the wall temperature increases during the combustion cycle. This leads to a decrease in the charging efficiency, as well as knocking in gasoline engines. To overcome these problems, the application of thermal insulation without raising the gas temperature during the intake stroke has been proposed [3-4]. As a means of achieving this, we developed a "temperature swing heat insulation coating" [5, 6, 7, 8, 9]. This reduces the heat flux from the combustion chamber into the cooling water by making the wall temperature follow the gas temperature as much as possible during the expansion and exhaust strokes.
Technical Paper

High Efficiency Diesel Engine with Low Heat Loss Combustion Concept - Toyota’s Inline 4-Cylinder 2.8-Liter ESTEC 1GD-FTV Engine -

2016-04-05
2016-01-0658
A highly efficient new 2.8-liter inline 4-cylinder diesel engine has been developed in response to growing demand for diesel engines and to help save energy while providing high-torque performance. Engine efficiency was improved by reducing cooling loss based on an innovative combustion concept applied across the whole engine. Cooling loss was reduced by restricting in-cylinder gas flows and improving combustion chamber insulation. To prevent the restricted gas flows from affecting emissions, a new combustion chamber shape was developed that increased air utilization in the cylinder through optimizing the in-cylinder fuel distribution. Combustion chamber insulation was improved by a new insulation coat that changes the wall surface temperature in accordance with the gas temperature. This reduces cooling loss and avoids the trade-off effect of intake air heating.
Technical Paper

Development of High Tumble Intake-Port for High Thermal Efficiency Engines

2016-04-05
2016-01-0692
Improving vehicle fuel economy is a central part of efforts toward achieving a sustainable society. An effective way of accomplishing this is to enhance the engine thermal efficiency. Mitigating knock and reducing engine heat loss are important aspects of enhancing the thermal efficiency. Cooled exhaust gas recirculation (EGR) is regarded as a key technology because it is capable of achieving both of these objectives. For this reason, it has been adopted in a wide range of both hybrid vehicles and conventional vehicles in recent years. In EGR equipped engines, fast combustion is regarded as one of the most important technologies, since it realizes higher EGR ratio. To create fast combustion, generation of strong in-cylinder turbulence is necessary. Strong in-cylinder turbulence is achieved through swirl, squish, and tumble flows. Specifically high tumble flow has been adopted on a number of new engines because of the intense effect of promoting in-cylinder turbulence.
Technical Paper

Research on the Measures for Improving Cycle-to-Cycle Variations under High Tumble Combustion

2016-04-05
2016-01-0694
Improving vehicle fuel economy is a central part of efforts toward achieving a sustainable society. An effective way for accomplishing this aim is to enhance the engine thermal efficiency. Measures to mitigate knocking and reduce engine cooling heat loss are important aspects of enhancing the engine thermal efficiency. Cooled exhaust gas recirculation (EGR) is regarded as a key technology because it is capable of achieving both of these objectives. For this reason, it has been adopted in a wide range of both hybrid and conventional vehicles in recent years. Toyota has been introducing these technologies as ESTEC (Economy with Superior Thermal Efficient Combustion). Improving cycle-to-cycle variations in combustion, in addition to fast combustion is essential for achieving high engine thermal efficiency.
Technical Paper

Theoretical Study on Spray Design for Small-Bore Diesel Engine

2016-04-05
2016-01-0740
1 Recently, demand for small-bore compact vehicle engines has been increasing from the standpoint of further reducing CO2 emissions. The generalization and formulation of combustion processes, including those related to emissions formation, based on a certain similarity of physical phenomena regardless of engine size, would be extremely beneficial for the unification of development processes for various sizes of engines. The objective of this study is to clarify what constraints are necessary for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes.
Technical Paper

Development of a New Valvetrain Wear Test - The Sequence IVB Test

2016-04-05
2016-01-0891
The study described in this paper covers the development of the Sequence IVB low-temperature valvetrain wear test as a replacement test platform for the existing ASTM D6891 Sequence IVA for the new engine oil category, ILSAC GF-6. The Sequence IVB Test uses a Toyota engine with dual overhead camshafts, direct-acting mechanical lifter valvetrain system. The original intent for the new test was to be a direct replacement for the Sequence IVA. Due to inherent differences in valvetrain system design between the Sequence IVA and IVB engines, it was necessary to alter existing test conditions to ensure adequate wear was produced on the valvetrain components to allow discrimination among the different lubricant formulations. A variety of test conditions and wear parameters were evaluated in the test development. Radioactive tracer technique (RATT) was used to determine the wear response of the test platform to various test conditions.
X