Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Three-Way Catalyst with Advanced Coating Layer

2020-04-14
2020-01-0653
Further improvements in catalyst performance are required to help protect the atmospheric environment. However, from the viewpoint of resource availability, it is also necessary to decrease the amount of precious metals used at the active sites of the catalyst. Therefore, a high-performance three-way catalyst with an advanced coating layer has been developed to lower the amount of precious metal usage. Fuel efficiency improvement technologies such as high compression ratios and a large-volume exhaust gas recirculation (EGR) generally tend to increase the ratio of hydrocarbons (HC) to nitrogen oxides (NOx) in exhaust gas. This research focused on the palladium (Pd) loading depth in the coating layer with the aim of improving the hydrocarbon (HC) conversion activity of the catalyst.
Technical Paper

Quantitative Optical Analysis and Modelling of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions

2018-09-10
2018-01-1728
This study models short circuits and blow-outs of spark channels. The short circuit model assumes that a spark channel is short-circuited between two arbitrary locations when the electric potential difference between the two locations exceeds the voltage which enables electrical insulation breakage in-between. The threshold voltage can be raised by increasing the distance between the two locations and decreasing the discharge current. Discharge current, in this model, represents the influence of both the spread and the number of electrically charged particles, i.e., electrons and positive ions, distributed near the two locations. Meanwhile, the blow-out model assumes that a strong flow diffuses electrons and positive ions in the spark channel, and consequently the discharge blows out.
Technical Paper

Development of Three-Way Catalysts Enhanced NOx Purifying Activity

2018-04-03
2018-01-0942
Growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. One of the key technologies is a new OSC material that has low surface area (SA) and high OSC performance. We enhanced the pyrochlore- ceria/zirconia (CZ) which has a very small SA. In order to enhance the heat resistance and promote the OSC reaction, we selected and optimized the additive element. This material showed high OSC performance especially in the temperature range of 400 degrees or less. Another key technology is washcoat structure that has high gas diffusivity by making connected pore in the washcoat (New pore forming technology).
Technical Paper

Constitutive Modeling of Brain Parenchyma Taking Account of Strain Rate Dependency with Anisotropy and Application to Brain Injury Analyses

2016-04-05
2016-01-1485
A reduction in brain disorders owing to traumatic brain injury (TBI) caused by head impacts in traffic accidents is needed. However, the details of the injury mechanism still remain unclear. In past analyses, brain parenchyma of a head finite element (FE) model has generally been modeled using simple isotropic viscoelastic materials. For further understanding of TBI mechanism, in this study we developed a new constitutive model that describes most of the mechanical properties in brain parenchyma such as anisotropy, strain rate dependency, and the characteristic features of the unloading process. Validation of the model was performed against several material test data from the literature with a simple one-element model. The model was also introduced into the human head FE model of THUMS v4.02 and validated against post-mortem human subject (PMHS) test data about brain displacements and intracranial pressures during head impacts.
Technical Paper

Development of a Compact Adsorption Heat Pump System for Automotive Air Conditioning System

2016-04-05
2016-01-0181
In order to reduce the energy consumption of the automotive air conditioning system, adsorption heat pump (AHP) system is one of the key technologies. We have been developing compact AHP system utilizing the exhaust heat from the engine coolant system (80-100 °C), which can meet the requirements in the automotive application. However, AHP systems have not been practically used in automotive applications because of its low volumetric power density of the adsorber. The volumetric power density of the adsorber is proportional to sorption rate, packing density and latent heat. In general, the sorption rate is determined by mass transfer resistance in primary particle of an adsorbent and heat and mass transfer resistance in packed bed. In order to improve the volumetric power density of the adsorber, it is necessary to increase the production of the sorption rate and the packing density.
Technical Paper

Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts

2015-11-09
2015-22-0003
Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method.
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

2015-04-14
2015-01-1005
Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
Technical Paper

Universal Diesel Engine Simulator (UniDES) 2nd Report: Prediction of Engine Performance in Transient Driving Cycle Using One Dimensional Engine Model

2013-04-08
2013-01-0881
The aim of this research is to develop the diesel combustion simulation (UniDES: Universal Diesel Engine Simulator) that incorporates multiple-injection strategies and in-cylinder composition changes due to exhaust gas recirculation (EGR), and that is capable of high speed calculation. The model is based on a zero-dimensional (0D) cycle simulation, and represents a multiple-injection strategy using a multi-zone model and inhomogeneity using a probability density function (PDF) model. Therefore, the 0D cycle simulation also enables both high accuracy and high speed. This research considers application to actual development. To expand the applicability of the simulation, a model that accurately estimates nozzle sac pressure with various injection quantities and common rail pressures, a model that accounts for the effects of adjacent spray interaction, and a model that considers the NOx reduction phenomenon under high load conditions were added.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Journal Article

Injection Nozzle Coking Mechanism in Common-rail Diesel Engine

2011-08-30
2011-01-1818
The hole diameter of injection nozzles in diesel engines has become smaller and the nozzle coking could potentially cause injection characteristics and emissions to deteriorate. In this research, engine tests with zinc-added fuels, deposit analyses, laboratory tests and numerical calculations were carried out to clarify the deposit formation mechanisms. In the initial phase of deposit formation, lower zinc carboxylate formed close to the nozzle hole outlet by reactions between zinc in the fuel and lower carboxylic acid in the combustion gas. In the subsequent growth phase, the main component changed to zinc carbonate close to nozzle hole inlet by reactions with CO₂ in the combustion gas. Metal components and combustion gases are essential elements in the composition of these deposits. One way of removing these deposits is to utilize cavitations inside the nozzle holes.
Technical Paper

Anti- Combustion Deposit Fuel Development for 2009 Toyota Formula One Racing Engine

2011-08-30
2011-01-1983
Toyota participated in Formula One1 (F1) Racing from 2002 to 2009. As a result of the downturn in the world economy, various engine developments within F1 were restricted in order to reduce the cost of competing in F1. The limit on the maximum number of engines allowed has decreased year by year. Toyota focused on the engine performance deterioration due to the combustion chamber deposits. In 2009, Toyota was successful in reducing around 40% of the deterioration by making combustion chamber cleaner in cooperation with ExxonMobil. This contributed to good result of 2009 F1 season for Toyota, including two second place finishes.
Journal Article

Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Spray with Restricted In-Cylinder Swirl and Squish Flows

2011-04-12
2011-01-1393
A new clean diesel combustion concept has been proposed and its excellent performance with respect to gas emissions and fuel economy were demonstrated using a single cylinder diesel engine. It features the following three items: (1) low-penetrating and highly dispersed spray using a specially designed injector with very small and numerous orifices, (2) a lower compression ratio, and (3) drastically restricted in-cylinder flow by means of very low swirl ports and a lip-less shallow dish type piston cavity. Item (1) creates a more homogeneous air-fuel mixture with early fuel injection timings, while preventing wall wetting, i.e., impingement of the spray onto the wall. In other words, this spray is suitable for premixed charge compression ignition (PCCI) operation, and can decrease both nitrogen oxides (NOx) and soot considerably when the utilization range of PCCI is maximized.
Journal Article

Analysis of Oxidative Deterioration of Biodiesel Fuel

2008-10-06
2008-01-2502
Methyl esters of saturated/unsaturated higher aliphatic acids (FAMEs) and a FAME of waste cooking oil (WCOME) were heated at 120°C in an air gas flow. The samples were analyzed before and after heating, using six different methods including electrospray ionization mass spectrometry. As a result, the samples after heating were found to contain low molecular weight aliphatic compounds and oligomers of the FAME. Based on the chemical structure of these oxidation products, reaction schemes were proposed for the deterioration of FAMEs. In addition, two unsaturated FAMEs containing 2,6-di-t-butyl-p-cresol (BHT) were similarly heated and analyzed to examine the effect of BHT on the oxidation of these FAME.
Journal Article

Numerical Simulation for Designing Next Generation TWC System with Detailed Chemistry

2008-06-23
2008-01-1540
A one-dimensional (1-D) micro-kinetic reaction model with considering mass transport inside porous washcoat was developed to promote an effective development of multi-functional catalysts. The validation of this model has been done successfully through the comparison with a set of basic experiments. A numerical simulation study was conducted for the various catalyst configurations of three-way catalysts under Federal Test Procedure (FTP75) condition. It was found that a double layer type had a significant advantage in the total mass emissions, especially in NOx emissions. The reaction mechanisms in these catalysts were numerically clarified from the view point of detailed reaction dynamics. We concluded that the utilization of the numerical simulation with the detailed chemistry was effective for the optimization of catalyst design.
Journal Article

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

2008-04-14
2008-01-1189
The effects of an increasing boost pressure, a high EGR rate and a high injection pressure on exhaust emissions from an HSDI (High Speed Direct Injection) diesel engine were examined. The mechanisms were then investigated with both in-cylinder observations and 3DCFD coupled with ϕT-map analysis. Under a high-load condition, increasing the charging efficiency combined with a high injection pressure and a high EGR rate is an effective way to reduce NOx and soot simultaneously, which realized an ultra low NOx of 16ppm at 1.7MPa of IMEP (Indicated Mean Effective Pressure). The flame temperature with low NOx and low soot emissions is decreased by 260K from that with conventional emissions. Also, the distribution of the fuel-air mixture plot on a ϕT-map is moved away from the NOx and soot formation peninsula, compared to the conventional emissions case.
Technical Paper

Variation in Nerve Fiber Strain in Brain Tissue Subjected to Uniaxial Stretch

2007-10-29
2007-22-0006
Diffuse axonal injury (DAI) is the most frequent type of closed head injury involved in vehicular accidents, and is characterized by structural and functional damage of nerve fibers in the white matter that may be caused by their overstretch. Because nerve fibers in the white matter have an undulated network-like structure embedded in the neuroglia and extracellular matrix, and are expected to be much stiffer than other components, the strain in the nerve fiber is not necessarily equal to that in the white matter. In this study, the authors have measured strain of the nerve fibers running in various directions in porcine brain tissue subjected to uniaxial stretch and compared them with global strain (tissue strain). The nerve fiber strain had a close correlation with their direction, and was smaller than surrounding global strain.
Technical Paper

A Study on Natural Gas Fueled Homogeneous Charge Compression Ignition Engine - Expanding the Operating Range and Combustion Mode Switching

2007-04-16
2007-01-0176
Natural gas homogeneous charge compression ignition (HCCI) engines require high compression ratios and intake air heating because of the high auto-ignition temperature of natural gas. In the first study, the natural gas fueled HCCI combustion with internal exhaust gas recirculation (EGR) was achieved without an intake air heater. The effects of the combustion chamber configuration, turbocharging, and external EGR were investigated for expanding the operating range. As a result, it was cleared that the combination of internal / external EGR and turbocharging is effective for expanding the HCCI operational range toward high loads. Meanwhile, the HCCI combustion characteristics at high engine speeds were unstable because of an insufficient reaction time for auto-ignition. Although the engine operation with a richer air-fuel ratio was effective for improving the combustion stability, the combustion noise (CN) was at an unacceptable level.
Technical Paper

Low Friction Property and its Mechanism of DLC-Si Films Under Dry Sliding Conditions

2007-04-16
2007-01-1015
Diamond-like carbon (DLC) films are of significant interest for the automobile field, because they possess the potential to improve friction properties under various sliding conditions. Among the various DLC films, the authors focus on silicon-containing DLC (DLC-Si) films, which exhibit extremely low friction coefficient under dry sliding conditions in an ambient air atmosphere. The aim of this study is to examine the influence of silicon content in DLC-Si films on the friction property of the films, and to clarify the low friction mechanism of the films. The friction test was conducted under dry sliding conditions. It was found that the films have an exceedingly low friction coefficient (about 0.05) ranging in silicon content from 4 at% to 17 at%. In order to examine the low friction mechanism of the films, surface analyses were done on the wear surface of DLC-Si films slid against bearing steel.
Technical Paper

Twenty-Year Review of Polymer-Clay Nanocomposites at Toyota Central R&D Labs., Inc.

2007-04-16
2007-01-1017
More than twenty years have passed since we invented polymer-clay nanocomposites (PCN), in which only a few wt.-% of silicate is randomly and homogeneously dispersed in the polymer matrix. When molded, these nanocomposites show superior properties compared to pristine polymers such as tensile strength, tensile modulus, heat distortion temperature, gas barrier property, and so on. The number of papers on PCN has increased rapidly in recent years, reaching over 500 only in 2005. As the pioneers of the new technology, we will review its history highlighting our works. Epoch-making events of PCN are as follows: In 1985, The first PCN, nylon 6-clay hybrid (NCH), was invented. In 1987, NCH was first presented at the ACS Fall Meetings. In 1989, NCH was presented at the MRS Fall Meetings, firing PCN. In 1989, Toyota launched cars equipped with a NCH part. In 1996, Clay was found to cause a memory effect in liquid crystals.
X