Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
Journal Article

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

The effects of an increasing boost pressure, a high EGR rate and a high injection pressure on exhaust emissions from an HSDI (High Speed Direct Injection) diesel engine were examined. The mechanisms were then investigated with both in-cylinder observations and 3DCFD coupled with ϕT-map analysis. Under a high-load condition, increasing the charging efficiency combined with a high injection pressure and a high EGR rate is an effective way to reduce NOx and soot simultaneously, which realized an ultra low NOx of 16ppm at 1.7MPa of IMEP (Indicated Mean Effective Pressure). The flame temperature with low NOx and low soot emissions is decreased by 260K from that with conventional emissions. Also, the distribution of the fuel-air mixture plot on a ϕT-map is moved away from the NOx and soot formation peninsula, compared to the conventional emissions case.
Technical Paper

Two-Dimensional Temperature Measurements in Engine Combustion Using Phosphor Thermometry

A phosphor thermometry, for measurements of two-dimensional gas-phase temperature was examined in turbulent combustion in an engine. The reasonable temperature deviation and the agreement with calculated data within 5% precision were achieved by single-shot images in the ignition process of compression ignition engine. Focusing on the local flame kernel, the flame structure could be quantitatively given by the temperature. It became evident that the HCCI flame kernels had 1-3 mm diameter and the isolated island structures. Subsequently, the HTR zone consisted of the combined flame kernels near TDC.
Technical Paper

Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine with Multiple Injection

The effects of multiple-injection on exhaust emissions and performance in a small HSDI (High Speed Direct Injection) Diesel engine were examined. The causes for the improvement were investigated using both in-cylinder observation and three-dimensional numerical analysis methods. It is possible to increase the maximum torque, which is limited by the exhaust smoke number, while decreasing the combustion noise under low speed and full load conditions by advancing the timing of the pilot injection. Dividing this early-timed pilot injection into two with a small fuel amount is effective for further decreasing the noise while suppressing the increase in HC emission and fuel consumption. This is realized by the reduced amount of adhered fuel to the cylinder wall. At light loads, the amount of pilot injection fuel must be reduced, and the injection must be timed just prior to the main injection in order to suppress a possible increase in smoke and HC.
Technical Paper

Numerical Analysis of Ignition Control in HCCI Engine

The UNIBUS (Uniform Bulky Combustion System) based on the HCCI (Homogeneous Charge Compression Ignition) concept uses an early injection quantity, timing, boost pressure, EGR, etc. for ignition control [1]. To further expand the operation range from the present level, the effects of the atmospheric conditions on ignition and combustion were calculated using CHEMKIN in the present study. When controlling the start timing of the high temperature reaction to suppress the early ignition, it is more effective to apply EGR than boost pressure. If fuel quantity is increased to expand load, it is possible to suppress a sharp cylinder pressure rising rate by increasing the boost pressure. Furthermore, it has become apparent that the cause of this is an increase in heat capacity.