Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Speciated Hydrocarbon Emissions of SI Engine During Cold Start and Warm-up

1993-10-01
932706
The emission characteristics of hydrocarbons during the cold start and the warm-up have been investigated. Timed sampling of hydrocarbon emissions upstream and downstream of a close-coupled catalytic converter have been carried out. The experimental results show that the emission characteristics of hydrocarbons are influenced by both the engine operating conditions and the heating characteristics of the catalytic converter. In the case of engine-out hydrocarbons, the total amount of hydrocarbons drastically decreases but the percentage contribution of the C2-C4 olefins to the engine-out hydrocarbons increases as the warm-up proceeds. Since these olefins have relatively high maximum incremental reactivity (MIR) factors, the specific reactivity (SR) of the engine-out hydrocarbons gradually increases during the warm-up. The adsorption and desorption processes of the engine-out hydrocarbons on the catalyst occur before the catalyst light-off.
Technical Paper

Toyota Lean Combustion System - The Third Generation System

1993-03-01
930873
The third generation four valve lean combustion engine controlled by newly designed combustion pressure sensor has been developed. This combustion sensor composed of a metal diaphragm and a thin silicone layer formed on devitron piece detects the combustion pressure in the No.1 cylinder. Comparing with the lean mixture sensor equipped in the first and second generation lean combustion engine, the lean misfire limit was detected directly with this sensor, and the lean operation range was expanded, which realized lower fuel consumption and NOx emission. The output torque fluctuation was minimized by precisely compensating the fuel supplied to individual cylinder based on the crank angle sensor signal. Separated dual intake ports, one with the swirl control valve and the other with helical port shape was designed and a twin spray injection nozzle was equipped between those ports. The swirl ratio was lowered from 2.2 to 1.7.
Technical Paper

Effects of Helical Port with Swirl Control Valve on the Combustion and Performance of S. I. Engine

1985-02-01
850046
A helical port with a swirl control valve (SCV) has been developed to satisfy two inconsistent requirements of achieving sufficient swirl generation to improve the combustion and still maintaining high volumetric efficiency. Their effects on combustion were confirmed in a single cylinder engine using high speed flame photography and cylinder pressure diagram analysis which has demonstrated faster combustion. As a result of a hot wire anemometer study, the differences in gas motion were clarified between two helical ports, one with and one without a SCV. A more active movement of the center of swirl was measured in the case of helical port with SCV which suggests the generation of higher turbulence in the cylinder.
X