Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of New Generation Continuously Variable Transmission

2014-04-01
2014-01-1728
In response to global demands for environmental conservation, the automotive industry is placing greater focus on the development of fuel-efficient technologies to help reduce global CO2 emissions. With the aim of simultaneously improving fuel economy and driveability, TOYOTA has developed a new continuously variable transmission (CVT) vehicles in North America equipped with a 1.8-liter engine [1]. This new CVT features various technologies for improving fuel economy, including: the world's first coaxial 2-discharge port oil pump system, wider ratio coverage, a flex start system, low-viscosity CVT fluid, and a higher final gear ratio. This paper outlines the configuration, characteristics, performance, and new technologies of this CVT.
Technical Paper

Development of Toyota's New “Super CVT”

2001-03-05
2001-01-0872
Toyota has developed a new continuously variable transmission (CVT) named “Super CVT”. The Super CVT has a wide ratio coverage and adopts a newly developed integrated control system with a direct injection gasoline engine (D-4) equipped with electronically controlled throttle. The combined package has achieved good fuel economy and a high overall level of performance. This paper shows the major features and performance of the Super CVT.
Technical Paper

Intelligent Four-Wheel-Drive System

1993-03-01
930670
The authors have developed an intelligent four-wheel drive system (I-4WD) designed to distribute the driving force to the front and rear wheels at the optimum ratio according to the running condition of the vehicle. The I-4WD consists of a center differential which distributes 30 percent of the driving force to front wheels and 70 percent to rear wheels (30:70), a hydraulic multi-disk clutch, an electronic control unit and a hydraulic control circuit. The driving force distribution can be steplessly varied from 30:70 up to the rigid state by controlling the hydraulic pressure on the clutch. The main control algorithm is based on the“yaw velocity model following control.” This composition has allowed us to accurately balance the cornering performance and stability without spoiling the critical limit predictability which is that the driver knows in advance the critical limit of vehicle dynamics.
X