Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Highly Efficient Hybrid Minivan with Super Low Emissions

2002-03-04
2002-01-0992
This paper introduces a minivan with a newly developed hybrid system known as THS-C (The Hybrid System - CVT). This hybrid system employs a highly efficient engine, a high performance exhaust emission control system, a high efficiency metal belt CVT, and a super efficient motor. System control of the engine, motor and CVT optimizes the operation of both the motor and the engine. With these improvements, this new vehicle achieves over 80% better fuel economy than a comparable conventional vehicle. Exhaust emissions are dramatically reduced using precision control during the engine starts and stops.
Technical Paper

Improvement of a Highly Efficient Hybrid Vehicle and Integrating Super Low Emissions

2000-10-16
2000-01-2930
A new hybrid system has been developed which features a highly efficient, clean gasoline engine, and a high performance exhaust catalyst system. The new system meets the strictest low emission standards in the world, while realizing a major reduction in CO2 emissions. The Toyota Hybrid System (THS) has improved engine performance, transaxle transmission efficiency, and various vehicle improvements for improving fuel consumption. It also employs a high performance catalyst, a rapid catalyst warm-up strategy, Toyota HC Adsorber and Catalyst System (Toyota-HCAC-System) and a Vapor Reducing Fuel Tank System. These combined technologies allow for the achievement of U.S. California SULEV, European Step 4 and Japanese J-ULEV emission requirements. It has also lowered the CO2 level to less than 120g/km in EC European mode.
Technical Paper

Model Based Air Fuel Ratio Control for Reducing Exhaust Gas Emissions

1995-02-01
950075
In order to satisfy future demands of low exhaust emission vehicles (LEV), a new fuel injection control system has been developed for SI engines with three-way catalytic converters. An universal exhaust gas oxygen sensor (UEGO) is mounted on the exhaust manifold upstream of the catalytic converter to rapidly feedback the UEGO output signal and a heated exhaust gas oxygen sensor (HEGO) is mounted on the outlet of the converter to achieve an exact air fuel ratio control at stoichiometry. The control law is derived from mathematical models of dynamic air flow, fuel flow and exhaust oxygen sensors (HEGO and UEGO). Experimental results on FTP (Federal Test Procedure) exhaust emissions show a dramatic reduction of HC, CO and NOx emissions and a possibility of practical low emission vehicles at low cost.
X