Refine Your Search



Search Results

Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Technical Paper

Ride Comfort Enhancement Using Active Stabilizer

Ongoing research on active stabilizers involves not only control of the roll angle of the vehicle based on steering input but also improving ride comfort by reducing roll vibration caused by the antiphase road surface input. In that context, roll skyhook control, which applies skyhook theory to provide feedback on the vehicle roll and drive the actuators, has already been presented. Although vibration in all frequency bands can be reduced if there is no control delay, time lags or phase delays in control elements such as the communication, computation, low-pass filter, or actuators can amplify vibration. Consequently, a sufficient effect of controlling cannot be obtained. This paper will address wheelbase filtering, which produces a frequency that minimizes roll oscillation, and is used to suppress the influence of the undesirable vibration.
Technical Paper

Preview Ride Comfort Control for Electric Active Suspension (eActive3)

This paper reports the results of a study into a preview control that uses the displacement of the road surface in front of the vehicle to improve for front and rear actuator responsiveness delays, as well as delays due to calculation, communication, and the like. This study also examined the effect of a preview control using the eActive3 electric active suspension system, which is capable of controlling the roll, pitch, and warp modes of vehicle motion.
Journal Article

Measurement of Piston Secondary Motion Using the New Digital Telemeter

The authors have developed a measurement technique using a new digital telemeter which measures the piston secondary motion as ensuring high accuracy while under the operation. We applied this new digital telemeter to several measurements and analysis on the piston secondary motion that can cause piston noises, and here are some of the results from our measurement. We have confirmed that these piston motions vary by only several tenths of millimeter changes of the piston specifications such as the piston-pin offset and the center of gravity of the piston. As in other cases, we have found that a mere change of pressure in the crankcase or the amount of lubricating oil supplied on the cylinder bore varies the piston motion that may give effect on the piston noises.
Journal Article

Decoupled 3D Moment Control for Vehicle Motion Using In-Wheel Motors

Vehicles equipped with in-wheel motors are being studied and developed as a type of electric vehicle. Since these motors are attached to the suspension, a large vertical suspension reaction force is generated during driving. Based on this mechanism, this paper describes the development of a method for independently controlling roll and pitch as well as yaw using driving force distribution control at each wheel. It also details the theoretical calculation of a method for decoupling the dynamic motions. Finally, it describes the application of these 3D dynamic motion control methods to a test vehicle and the confirmation of the performance improvement.
Technical Paper

Vehicle Dynamics Innovation with In-Wheel Motor

In-wheel motors (IWM) will be a key technology that contributes to the popularization of electric vehicles. Combining electric drive with IWM enables both good vehicle dynamics and a roomy interior. In addition, the responsiveness of IWM is also capable of raising dynamic control performance to an even higher level. IWM enable vertical body motion control as well as direct yaw control, electric skid control, and traction control. This means that IWM can replace most control actuators used in a vehicle chassis. The most important technology for IWM is to enable the motor to coexist with the brake and the suspension arms inside the wheel. The IWM drive unit described in this paper can be installed with a front double wishbone suspension, the most difficult configuration.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Toyota's New Integrated Drive Power Control System

Toyota has developed a new system, which uses integrated control of powertrain by PowerTrain Management (PTM), in order to improve driving comfort and reliability. This system is currently in use on Lexus's new LS460. This system is composed of 4 parts: a generation part, a mediating part, a modification part and a distribution part. In each part, processes are based on drive power and torque. In the generation part, requests from a programmed model driver, Driving Support Computer and Vehicle Dynamics Integrated Management (VDIM) are generated and expressed by drive power. In the mediating part, most suitable vehicle drive power was selected among the requests. In the modification part, the selected request is modified using a programmed powertrain model, which considers internal combustion engine condition and powertrain response and transmission's tolerance. In the distribution part, optimized engine torque and gear ratio are processed.
Technical Paper

Improvement of Vehicle Dynamics Based on Human Sensitivity (Second Report) -A Study of Cornering Feel-

Vehicle body movements that occur during cornering have a strong influence on the evaluation of ride and handling. As a first step, we analyze subjective comments from trained drivers and find that the sense of vision played a major part in cornering feel. As a result of quantitative evaluations, we hypothesize that smaller time lag between roll angle and pitch angle made cornering feel better. We perform a human sensitivity evaluation, which confirmed this hypothesis. Given this result, we derive analytical equations for the roll center kinematics and the damping characteristics, in order to find a theoretical condition for the time lag of 0sec (giving a good cornering feel). We verify this by experiment.
Technical Paper

Development of Vehicle Dynamics Integrated Management

We have developed a new vehicle dynamics control system that is based on a new concept and uses a new hydraulic modulator. The new algorithm, which reflects the concept and hydraulic modulator, can control a vehicle not only in emergency but also in normal driving situation. This results in excellent vehicle controllability.
Technical Paper

Analysis of Vehicle Stability After Releasing the Accelerator in a Turn

Vehicle stability after releasing the accelerator during limit cornering (from now on “Tuck-in”) is the behavior that the turning radius of a vehicle gets smaller after releasing the accelerator. This paper presents that the main factors of yaw moment variation by releasing the accelerator are the change of lateral forces due to longitudinal transfer of normal loads, lateral shift of vehicle center of gravity due to vehicle roll and tire lateral deflection, and the change of lateral forces due to deceleration. It also shows that roll stiffness distribution and longitudinal acceleration have an influence through the formulation of turning radius ratio.
Technical Paper

Handling Analysis with Vehicle Dynamics Simulator

We have developed a vehicle test system called the Vehicle Dynamics Simulator (VDS). The system measures the handling characteristics in a transient state in the laboratory. The automobile suspensions are moved as on a road with the machine providing relative motion by force transducer platform beneath each tire. The detailed measurements of transitive motions and forces given to the wheel clarify the kinematics and compliance characteristics contributed to the good handling performance and stability. This paper presents the system introduction and the results of analyzing the suspensions characteristics by the new analytical technique for breaking down into a variety of compliance components in a transient state.
Technical Paper

Vehicle Stability Control in Limit Cornering by Active Brake

Improvement of vehicle dynamics in limit cornering have been studied. Simulations and tests have verified that vehicle stability and course trace performance in limit cornering have been improved by active brake control of each wheel. The controler manages vehicle yaw moment utilizing difference braking force between left and right wheels, and vehicle deceleration utilizing sum of braking forces of all wheels.
Technical Paper

Torque Converter Clutch Slip Control System

The torque converter clutch slip control system adopted in the Toyota A541E automatic transaxle engages the torque converter clutch by applying a steady slip speed to prevent the torque fluctuation of the engine to be transmitted to the drivetrain while enhancing the transmission efficiency of the torque converter. The feedback controller of the slip speed adopts the H∞ (H-Infinity) control theory which offers a high level of robust stability, and is the first of its kind in a mass produced component. As a result, a highly accurate and reliable system has been realized, contributing to large-scale fuel economy.
Technical Paper

Cruise Control System Using Adaptive Control Theory

Several methods have been studied by using adaptive control in order to tune parameters of the cruise control automatically. But theoretical analysis has not been done by the reason of severe non-linearity. In this paper, a vehicle dynamics model is made with theoretical analysis, and two adaptive control methods to assist the conventional PID controller are proposed.
Technical Paper

Intelligent Four-Wheel-Drive System

The authors have developed an intelligent four-wheel drive system (I-4WD) designed to distribute the driving force to the front and rear wheels at the optimum ratio according to the running condition of the vehicle. The I-4WD consists of a center differential which distributes 30 percent of the driving force to front wheels and 70 percent to rear wheels (30:70), a hydraulic multi-disk clutch, an electronic control unit and a hydraulic control circuit. The driving force distribution can be steplessly varied from 30:70 up to the rigid state by controlling the hydraulic pressure on the clutch. The main control algorithm is based on the“yaw velocity model following control.” This composition has allowed us to accurately balance the cornering performance and stability without spoiling the critical limit predictability which is that the driver knows in advance the critical limit of vehicle dynamics.
Technical Paper

Development of a Class C Multiplex Control IC

With the increasing use of electronic control systems to improve vehicle dynamics, there is an ever growing need to transfer control information among electronic control units(ECUs). To meet this need, a protocol was proposed for high-speed multiplex in the previous SAE paper 910463. Based on the paper, a prototype IC for high-speed multiplexing control was developed. First, a further analysis was made of the information which is transferred among ECUs. As a result, it was found that the information has certain distinctive characteristics. These characteristics are so distinctive that it may be relevant to devise a new protocol for communication. Based on the analysis, a new form of token passing method was implemented. By using this method, it is easy to calculate transmission latency time. So this method is suitable for a real time control application like vehicle dynamics control.
Technical Paper

Multiplex Systems for Automotive Integrated Control

This paper describes the development of the electrical systems for the integrated control system which unified automobile electronic control systems and led to a dramatic improvement in vehicle dynamics. An outline of the system is presented first, followed by actual automobile application examples of electrical systems employing medium-speed multiplexing.
Technical Paper

Development of an Integrated System of 4WS and 4WD by H∞ Control

A control law for integrating 4WS and 4WD systems is presented. It is based upon a non-linear vehicle model in which the lateral force acting on the tires changes according to the tire slip angle, slip ratio and the load. The purpose of the system is to make the actual yaw rate follow the desired yaw rate. A two-degree-of-freedom control structure has been devised and variable transformation is used to linearize the non-linear model so that H∞ control theory can be applied to design the feedback compensator. A new control theory is used to calculate optimum command values for the 4WS and 4WD actuators. Moreover, adaptive logic is added to reduce the desired yaw rate as the tires approach the limits of adhesion. Simulations and experiments prove the system greatly improves stability during cornering.
Technical Paper

Development of Integrated System Between Active Control Suspension, Active 4WS, TRC and ABS

TOYOTA has adopted the Active Hydropneumatic Suspension and the Active Four Wheel Steering(Active 4WS) for the 1991 SOARER. The SOARER'S Active Suspension. is based on CELICA'S Active Suspension for the 1989 mode1(1)(2)(3)(4)(5)(6)(7). Because the Suspension has no coil springs,improvements in both ride and handling performance are obtained. The Active 4WS controls the rear steering angle by using yaw rate feedback contro1,and this is the world's first system in massproduction car. TOYOTA has integrated the ABS and TRC to these systems in the SOARER. We have succeeded in improving the total vehicle dynamics performance,and have obtained higher maneuver-ability and controllability with a total integrated system. The following describes the effects of integrated control.