Refine Your Search


Search Results

Viewing 1 to 17 of 17
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

The Color Specification of Surrogate Roadside Objects for the Performance Evaluation of Roadway Departure Mitigation Systems

Roadway departure mitigation systems for helping to avoid and/or mitigate roadway departure collisions have been introduced by several vehicle manufactures in recent years. To support the development and performance evaluation of the roadway departure mitigation systems, a set of commonly seen roadside surrogate objects need to be developed. These objects include grass, curbs, metal guardrail, concrete divider, and traffic barrel/cones. This paper describes how to determine the representative color of these roadside surrogates. 24,762 locations with Google street view images were selected for the color determination of roadside objects. To mitigate the effect of the brightness to the color determination, the images not in good weather, not in bright daylight and under shade were manually eliminated. Then, the RGB values of the roadside objects in the remaining images were extracted.
Journal Article

An Application of Shape Optimization to Brake Squeal Phenomena

The present paper describes an application of non-parametric shape optimization to disc brake squeal phenomena. A main problem is defined as complex eigenvalue problem in which the real part of the complex eigenvalue causing the brake squeal is chosen as an objective cost function. The Fre´chet derivative of the objective cost function with respect to the domain variation, named as the shape derivative of the objective cost function, is evaluated using the solution of the main problem and the adjoint problem. A selection criterion of the adoptive mode number in component mode synthesis (CMS), which is used in the main problem, is presented in order to reduce the computational error in complex eigenvalue pairs. A scheme to solve the shape optimization problem is presented using an iterative algorithm based on the H1 gradient method for reshaping. For an application of the optimization method, a numerical example of a practical disc brake model is presented.
Journal Article

Development of HEV Engine Start-Shock Prediction Technique Combining Motor Generator System Control and Multi-Body Dynamics (MBD) Models

Previous reports have already described the details of engine start-shock and the mechanism of vibration mechanism in a stationary vehicle. This vibration can be reduced by optimized engine and motor generator vibration-reduction controls. A prediction method using a full-vehicle MBD model has also been developed and applied in actual vehicle development. This paper describes the outline of a new method for the hybrid system of mechanical power split device with two motors that predicts engine start-shock when the vehicle is accelerating while the engine is stopped. It also describes the results of mechanism analysis and component contribution analysis. This method targets engine start-shock caused by driving torque demand during acceleration after vehicle take-off. The hybrid control system is modeled by MATLAB/Simulink. A power management and motor generator control program used in actual vehicles is installed into the main part of the control system model.
Technical Paper

Development of Vehicle Dynamics Integrated Management

We have developed a new vehicle dynamics control system that is based on a new concept and uses a new hydraulic modulator. The new algorithm, which reflects the concept and hydraulic modulator, can control a vehicle not only in emergency but also in normal driving situation. This results in excellent vehicle controllability.
Technical Paper

Diagnostics Trends for Automotive Electronic Systems

This paper is a study of the On-Board Diagnosis (OBD), a constituent element of the automotive electronic diagnosis system, together with its support functions. With regard to the OBD, we have listed and explained the principles of various diagnostic methods and their advantages and disadvantages. In addition, we have also commented on design factors and concepts. As to the support functions, nameiy diagnostics communication and diagnostic scan tool, drive recorder, and also IT, we have made recommendations on their future development in view of the functional division of roles with respect to the OBD in light of their respective characteristics.
Technical Paper

Development of Rain Sensor for Automatic Wiper System

One of the key elements of vehicle safety requires a constantly uninterrupted visible view especially during unexpected weather conditions. Our present development of a light reflection type rain sensor is a key device of our automatic windshield wiper system. The design concept of the sensor is based on the quantification on both detected rainfalls and wiping modes in order to match the wiping mode in an operator's mind by optimizing the optical sensing system and establishing an algorithm for controlling wiping. In addition, auto-initialization of the system has been achieved first in the world.
Technical Paper

Development of Sleeve Clinching Method and Making Practicable

We developed a fastening method to reduce noise levels and fastening work loads. The development was based on research into improved tools and fasteners. This was done in preparation for an increase in elderly worker and female worker population in the Automobile Assembly Shop. The principle of this method is to form female threads inside a straight sleeve by clinching the sleeve around a threaded bolt. We achieved improvements in component material clinching force and a durability for loosening torque compared to conventional bolt and nut methods.
Technical Paper

Model Based Air Fuel Ratio Control for Reducing Exhaust Gas Emissions

In order to satisfy future demands of low exhaust emission vehicles (LEV), a new fuel injection control system has been developed for SI engines with three-way catalytic converters. An universal exhaust gas oxygen sensor (UEGO) is mounted on the exhaust manifold upstream of the catalytic converter to rapidly feedback the UEGO output signal and a heated exhaust gas oxygen sensor (HEGO) is mounted on the outlet of the converter to achieve an exact air fuel ratio control at stoichiometry. The control law is derived from mathematical models of dynamic air flow, fuel flow and exhaust oxygen sensors (HEGO and UEGO). Experimental results on FTP (Federal Test Procedure) exhaust emissions show a dramatic reduction of HC, CO and NOx emissions and a possibility of practical low emission vehicles at low cost.
Technical Paper

Development of Non-Contact Orange Peel Quality Monitor

We have developed a new measurement apparatus designed to take orange-peel quality-assessment measurements of paint-finished surfaces on a non-contact basis. This apparatus was developed to determine the relationship between in-line spray-coating conditions and the resulting orange peel surface, and to optimally control/manage the conditions of our existing facilities to ensure the best possible coating results based on the obtained data. The apparatus has been implemented by adopting image analysis, which combines an optical system design based on human inspectors’ visual-checking conditions and a set of straightforward algorithms.
Technical Paper

Development and Practicing of Automatic Fluorescent Magnetic Particles Inspection

The fluorescent magnetic particle inspection is widely used as a visual inspection method for checking cracks generated in hardening and grinding of induction-hardened parts. However, automation of this inspection process has strongly been demanded, due to poor environmental conditions and production line speed. To satisfy such a demand, we have developed a method for picking up images of automotive parts with higher S/N ratio and an original algorithm for image processing which helps measure cracks accurately without being affected by the illuminance and magnetic particle solution concentration. Then we selected the front axle shaft as the object to study practical use and have solved various technical problems in actual use, thereby succeeding in actual application to our production lines.
Technical Paper

Automobile Navigation System Using Individual Communication Beacon

A communication system that uses roadside beacons to broadcast road and traffic information and private messages to vehicles has been developed. The system, called Road/Automobile Communication System (RACS), was the result of a joint research project involving the Public Works Research Institute and 25 private-sector corporations. This paper contains an outline of RACS and of an onboard system developed by TOYOTA and presents the results of field tests conducted in the Tokyo area. The results not only verify the capability of the RACS system and the effectiveness of the in-vehicle equipment but also indicate the potential of such a beacon based network to improve traffic jam and driving safety whilst providing enhanced communication facilities without increasing radio-wave congestion.
Technical Paper

New Plastic Coloring and Forming System

This paper describes a new plastic coloring and forming system. The system greatly reduces the time and amount of raw materials necessary for color changes, and eliminates the need for manual cleaning during a color change. This system is well-suited for small-lot production with frequent color changes, as well as for automated production systems. The system is being used by auto parts makers, and is practical in a variety of other fields involved with the coloring and forming of plastics.
Technical Paper

Development of a Real Time Sensor Feedback Robot

In today's manufacturing environment, it has become necessary to develop intelligent robots which are adaptable to changing process requirements. To attain this goal, a key robot technology involving new real time control algorithms has been developed. The algorithms govern the 3D position and orientation of the robot. Initially, a simulation method was used to study the achievable system accuracy. From the results of computer simulations, it was determined that the algorithms can achieve a high tracking accuracy of ± 0.5 mm at a velocity of 300 mm/sec (4 times higher than conventional sensory control speeds). For a sensory feedback system, delays in tracking movements are inherent. This is due to the calculation time required for control and to the servo response. To solve this problem, a sensor is positioned at a predetermined distance in advance of the tool in the direction of travel.
Technical Paper

Aerodynamic Effects of an Overtaking Articulated Heavy Goods Vehicle on Car-Trailer-An Analysis to Improve Controllability

It is well known and a common experience among drivers that controllability and stability of a car-trailer combination is affected when an articulated Heavy Goods Vehicle overtakes. In this paper, aerodynamic effects to a car-trailer combination when it is overtaken by an articulated HGV, have been analyzed experimentally using 1/20 scale models in wind tunnel, and a method to suppress this phenomenon has been investigated. The dynamic behaivor of a car-trailer combination is simulated by a simple mathematical model. The result shows that a car-trailer combination can be stable following the addittion of aerodynamic devices to each side of the vehicle. This simulated result is verified by the on-read test.
Technical Paper

Regenration Process of Ceramic Foam Diesel-Particulate Traps

Periodic regeneration of the diesel particulate trap is essential to maintain the collection efficiency and exhaust gas hack pressure at acceptable levels. The objectives of this study are to describe the phenomenology of ceramic foam filter regeneration process and to present its mathematical model. Further simulation study is carried out to estimate the effects of various factors including fuel additive on the ignition and the filter bed temperature and to investigate conditions of excessive temperature which could result in filter destruction. The model is based on the assumption that the regeneration process is composed of two steps. The first step is the additional heat supply from the external energy source, and the second step is the spontaneous combustion propagation. The results from the analytical model agreed very well with the experimental results.
Technical Paper

Development to Standardize PC System for the Automotive Industry

Recently, programmable controllers have been utilized for new equipment on production lines in the automobile industry. However, operators who must use these devices to carry out various operations face difficulties understanding the different methods for programming, ets. of these devices, and for handling the various types of peripheral equipment. In accordance with the increase in the number of PCs, CAD/CAM systems have become requisite for achieving high efficiency in sequence control design. However, poor PC standards prevent their development. In this paper, the development of PC systems, as well as methods for the elimination of problems with standardization, are described. The methods of standardization concern the methods of transmission between the PC and the peripheral equipment, the construction of peripheral equipment and the structure of data in the ladder diagram.