Refine Your Search

Topic

Author

Search Results

Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Technical Paper

Development of Pitting Resistant Steel for Gears

2006-04-03
2006-01-0895
Newly designed gears are subject to higher loads that demand a steel that is capable of greater pitting resistance. The application of shot peening to gears has been increasing to improve tooth root strength, but pitting resistance had not been necessarily high. This study examines the effect of alloying additions mainly on tempering resistance and the formation of a non-martensitic layer. The developed high Si-Mo type steel shows excellent pitting resistance, even in shot peened gears, as compared to that of conventional steels due to high tempering resistance and the thin, uniform non-martensitic layer. This new steel is of practical use in some multi-speed automatic transmission gears.
Technical Paper

Development of Non-Lead-Added Free-Cutting Steel for Automobile Parts

2004-03-08
2004-01-1527
A new, free-cutting steel, hereafter referred to as “non-lead-added free-cutting steel”, has been developed with the intention of replacing currently applied lead containing free cutting steel. The ultimate goal of this project is to provide a new lead-free steel grade that will contribute to the removal of environmentally harmful substances from automobile parts. In this project, we have targeted the development of a material that would demonstrate levels of machinability and other mechanical properties equivalent to those of the conventional free-cutting steel to which sulfur (S), lead (Pb) and calcium (Ca) or combinations, thereof have been added. The fine dispersion of sulfide, modified by adding Mg and Ca, is most effective in enhancing the chip breakability that would otherwise deteriorate due to the absence of lead. The practical application of the non-lead-added free-cutting steel has rendered the goal of total removal of lead from special steel products highly obtainable.
Technical Paper

Development of Multi-Layer Plastic Membrane (Bladder Membrane) for Vapor Reducing Fuel Tank

2001-03-05
2001-01-1120
The Vapor Reducing Fuel Tank System (Bladder Tank System) using a flexible plastic membrane (Bladder Membrane) was newly developed in order to reduce the amount of vaporized gasoline in a steel fuel tank. This Bladder Membrane is flexible to expand in proportion to a fuel volume and prevents the permeation of the vaporized gasoline. As a result of our initial study for various materials, we decided to apply a multi-layer plastic material which could achieve both low fuel permeability and good flexibility. This multi-layer material consists of polyethylene(PE) for structural material and polyamide(PA) for low permeability. The modulus of the PE needs to achieve a sufficient flexibility in order to keep the movement of the membrane. While PA material must have not only low fuel permeability but also strong adhesion with the structural material of PE. We also clarify the membrane design to keep a good flexibility and to reduce a strain.
Technical Paper

Development of alloy cast iron for press die

2000-06-12
2000-05-0194
This paper describes the development of alloy cast iron that can be used for the cutting edges of the trimming die of a press die. Usually, a block of tool steel or steel casting is inserted at the cutting edge of the trimming die of a press die. However, we unified the structure part and the cutting-edge part of a press die with alloy cast iron. As it can''t bear as the cutting edge in this state, the cutting edge is processed by flame-hardening. After the flame- hardening, we developed the alloy cast iron so that enough hardness may be obtained by natural air cooling. Thereby, the machining of the installation seat of the cutting edge decreased and the expense of dies has been reduced.
Technical Paper

Development of P/M Titanium Engine Valves

2000-03-06
2000-01-0905
In October 1998, a new mass-produced car with titanium engine-valves was released from TOYOTA Motor Corporation. Both intake and exhaust valves were manufactured via a newly developed cost-effective P/M forging process. Furthermore, the material which was specially designed for the exhaust one is a unique titanium metal matrix composite (MMC). This paper discusses the materials and manufacturing methods used. The tensile, fatigue strength and creep resistance of the MMC are always superior to those for the typical heat-resistant steel of 21-4N. Both valves have achieved sufficient durability and reliability with a manufacturing cost acceptable for mass-produced automobile parts.
Technical Paper

Anti-Shudder Mechanism of ATF Additives at Slip-Controlled Lock-Up Clutch

1999-10-25
1999-01-3616
The anti-shudder effect of ATF additives and their mechanisms have been investigated. Anti-shudder durability was evaluated using an automatic transmission (AT) on an engine stand under continuously slip-controlled condition. The addition of over-based Ca-sulfonate and friction modifier (FM) remarkably improved the anti-shudder durability of ATF. The surface roughness of the contact area (contact area roughness) of the clutch plates was measured by an electron probe surface roughness analyzer. To evaluate the boundary frictional properties of the adsorbed film formed, the friction coefficient of the clutch plates in the absence of oil was examined after the anti-shudder durability test. It was found that shudder occurrence was strongly correlated with the contact area roughness and the boundary frictional property of the steel plate surface. Large contact area roughness and low boundary friction were preferred to prevent shudder.
Technical Paper

Thermal Fatigue Life Prediction for Stainless Steel Exhaust Manifold

1998-02-23
980841
This paper describes the application of a life prediction method for stainless steel exhaust manifolds. Examination of the exhaust manifold cracks indicated that many of the failures could be attributed to out-of-phase thermal fatigue due to compressive strains that occur at high temperatures. Therefore, the plastic strain range was used as the crack initiation criteria. In addition, the comparison of the calculated thermal fatigue stress-strain hysteresis to the experimental hysteresis made it clear that it was essential to use the stress-strain data that was obtained through tensile and compression testing by keeping the test specimens at the maximum temperature of the thermal fatigue test mode. A finite element crack prediction method was developed using the aforementioned material data and good results were obtained.
Technical Paper

Development of Ductile Cast Iron Flywheel Integrated with Hot Form-Rolled Gear

1998-02-01
980568
New ductile cast iron flywheel integrated with gear and its manufacturing process were developed to reduce the manufacturing steps and cost compared with conventional flywheel around which a steel ring gear is fit. In this process, the ring gear teeth around a cast iron flywheel are formed directly in net shape and free from any defect by the hot form-rolling method, followed by the thermomechanical treatment in a short time. The gear is superior to that made by the conventional hobbing and heat treatment in accuracy, strength and anti-wear property.
Technical Paper

Development of High Strength and High Toughness Bainitic Steel for Automotive Lower Arm

1995-02-01
950211
A high strength and high toughness new bainitic steel has been developed which shows comparable mechanical properties, fatigue property, and machinability to those of quenched and tempered SAE 5140. The heat treatment of the bainitic steel is aging after hot forging in order to improve ratio of 0.2% proof stress and tensile strength (i.e. yield ratio) and to avoid warpage associated with quenching. The new bainitic steel has been applied to the slender and lightweight lower arms for automotive suspension. As a result, the total production costs in the lower arms have been reduced by nearly 15 percent.
Technical Paper

Development of High Fatigue Strength Spring - Application on Clutch Disc Torsional Damper

1995-02-01
950903
We have developed a new torsional damper spring which lowers the torsional rigidity of the clutch disc while retaining its conventional size. The following two items have been adopted in the newly developed spring: 1) A new steel wire which suppresses any core-softening of the element wire through nitriding. 2) A dual-stage shot peening method which uses harder steel shots (rather than conventional shots) in order to obtain an optimal residual stress profile. As a result of evaluating the fatigue characteristics of this spring, it was discovered that its fatigue strength is approximately 35% higher than that of the conventional spring. A clutch disc using this spring was able to absorb rattling noises which conventional clutch discs could not.
Technical Paper

Binding Force Control of Uni-Pressure Cushion in Automobile Panel Stamping

1995-02-01
950916
Recently, single action draw with cushion replaces draw with double action presses. In the single action draw, binding fluctuation problem occurs by its structure. We applied an NC cushion to prevent the problem. We compared the cushion force wave with and without an NC cushion. The NC cushion showed effective damping. We studied the binding force control of a side member outer panel. The panel didn't have the formable range of binding. This means the lowest binding force to avoid wrinkling, still had crack problems. We introduce four patterns of binding force control with the NC cushion. As a result, we found the suitable pattern to suppress the surface distortion. Controlling the binding force shows effectiveness as a means of suppressing surface distortions.
Technical Paper

Development of an Abdominal Deformation Measuring System for Hybrid III Dummy

1994-11-01
942223
A new abdominal deformation measuring system for Hybrid III dummy has been developed in order to evaluate the abdominal injury by using the dummy. From the dynamic abdominal deformation of the dummy, the abdominal compression velocity V, the compression ratio C, and the maximum value of the product VC, expressed as [VC]MAX, can be calculated. This abdominal deformation measuring system consists of an abdominal insert having the same compression characteristics as those of the human body, a dynamic deformation sensor, and an analysis program. The abdominal insert is made of elastic foam rubber and has a shape fitted to Hybrid III. The deformation sensor in a band shape is a thin stainless steel band with 25 strain gauges on it. Each strain gauge measures the curvature on its mounted position. Since the deformation sensor is located along the surface of the dummy abdomen, the sensor deforms as the dummy surface deforms.
Technical Paper

Development of an On-Board Type Oil Deterioration Sensor

1993-10-01
932840
According to the principle of pH measurement, an on-board type engine oil deterioration sensor has been developed. The developed sensor is composed of a Pb and oxidized stainless steel electrodes. The sensor signal shows a good linear relationship to the quasi-pH value of the oil. Especially in the region where the oil deterioration proceeds, the remaining basic additives in the oil is easily estimated from the sensor signal.
Technical Paper

Finite Element Simulation of Stamping a Laser-Welded Blank

1993-03-01
930522
In order to achieve higher assembly accuracy for automotive body, increased body rigidity, and decreased stamping and assembly costs in car body manufacturing, a new method of sheet metal stamping has been developed, in which several blanks of different strength and thickness are integrated using CO2 laser-welding. The stamping formability of the laser-welded blank is limited compared with that of the conventional single blank. It is very difficult to predict the exact decrease in formability for different positions of the weld line and for different matching of materials. Because experimental estimations were indispensable for stamping die designers to evaluate formability at the stage of planning dies, many man-hours were spent conducting actual experiments.
Technical Paper

Development and Practicing of Automatic Fluorescent Magnetic Particles Inspection

1993-03-01
930576
The fluorescent magnetic particle inspection is widely used as a visual inspection method for checking cracks generated in hardening and grinding of induction-hardened parts. However, automation of this inspection process has strongly been demanded, due to poor environmental conditions and production line speed. To satisfy such a demand, we have developed a method for picking up images of automotive parts with higher S/N ratio and an original algorithm for image processing which helps measure cracks accurately without being affected by the illuminance and magnetic particle solution concentration. Then we selected the front axle shaft as the object to study practical use and have solved various technical problems in actual use, thereby succeeding in actual application to our production lines.
Technical Paper

Development of Super Olefin Bumper for Automobiles

1992-02-01
920525
The EMT (Elastomer Modified Thermoplastics) currently used in passenger car bumper fascia are limited in retaining low CLTE (Coefficient of Linear Thermal Expansion) and impact resistance, although they are highly rigid, which allows a reduction in weight, and also have high flowability during injection molding. We have developed a new bumper material called “Super Olefin Polymer” using a unique theory based upon a reversal of the current concept. The current polymer design concept of the EMT material is to compound and disperse the EPR (Ethylene Propylene Rubber) into the resin matrix such as polypropylene. We reversed the domain and the matrix, and treated the resin phase as the filler and the elastomer phase as the matrix.
Technical Paper

Development of Magnesium Steering Wheel

1991-02-01
910549
This paper describes the development of one-piece die cast magnesium steering wheel frame for a steering wheel incorporating an air bag system. The light weight magnesium frame was designed to have proper stiffness, strength and characteristics of energy absorption. Magnesium alloys with various aluminum contents were tested, and AM60B alloy was selected because of its favorable properties of strength and elongation. New manufacturing techniques, for example, a vacuum hot chamber die casting system and a surface defect inspection system were developed in order to produce high quality castings. The characteristics of energy absorption were evaluated in the laboratory and on actual vehicle crash test, and the results were satisfactory. The magnesium steering wheel frame is about 45% (550g) lighter than the steel one. It has been in production in Toyota passenger cars with driver side air bags.
Technical Paper

A Study of Additive Effects on ATF Frictional Properties Using New Test Methods

1990-10-01
902150
A new test machine has been developed which can evaluate vibration due to stick-slip using an actual full-scale clutch pack. Using this machine, a static breakaway friction coefficient measurement test method and a stick-slip test method have been established. Both methods have been shown to provide results which correlate with the results from both a full-scale assembly test and a vehicle shudder evaluation test. The evaluation of the frictional properties of commercial oils using these test methods showed that the static breakaway friction coefficient and the stick-slip properties have generally contradictory performance to each other for automatic transmission. The study of the frictional properties for typical additives and an analysis of the surface of the steel plates with ESCA (Electron Spectroscopy for Chemical Analysis) showed that the frictional properties are significantly affected by the additives adsorbed on the clutch plate sliding surface.
Technical Paper

The New 2.4-Liter Slant Engine, 2TZ-FE, for the Toyota Previa

1990-09-01
901717
This paper describes a new 2.4-liter 16-valve in-line four-cylinder engine, 2TZ-FE, which has been mounted horizontally on a new minivan, the TOYOTA PREVIA. This engine has the TOYOTA original compact 4-valve DOHC system (scissors gear mechanism), and TOYOTA's newest technologies, such as 75 deg. slant cylinder and Separated accessory Drive System. The compact configuration reduces the height of this engine to only 44Omm (17.3-inches). Engine location is under the flat floor on the midship rear-wheel-drive vehicle and allows the PREVIA to have a spacious cabin with walkthrough. Its high performance, 103kW at 500Orpm and 209Nm at 4000rpm, has been achieved through updated technologies, such as: Knock Controll System (KCS), well studied intake system and exhaust manifold which is made of stainless steel double pipe. At the same time, high reliability and quietness have been achieved for the 2TZ-FE by TOYOTA's updated technologies.
X