Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Particulate filter performance mapping for in-service conformity

2024-04-09
2024-01-2382
The proposed Euro-7 regulations are expected to build on the significant emissions reductions that have already been achieved using advanced Euro VI compliant after treatment systems (ATS). The introduction of in-service conformity (ISC) requirements during Euro VI paved the way for enabling compliance during real-world driving conditions. The diverse range of applications and resulting operating conditions greatly impact ATS design and the ability of the diesel particulate filter (DPF) to maintain performance under the most challenging boundary conditions including cold starts, partial/complete regenerations, and high passive soot burn operation. The current study attempts to map the particle number (PN) filtration performance of different DPF technologies under a variety of in-use cycles developed based on field-data from heavy duty Class-8 / N3 vehicles.
Technical Paper

Evaluation of Uncoated Gasoline Particulate Filter Performance for US EPA MY27+ Particulate Mass Emissions Regulation

2024-04-09
2024-01-2383
The gasoline particulate filter (GPF) represents a practical solution for particulate emissions control in light-duty gasoline-fueled vehicles. It is also seen as an essential technology in North America to meet the upcoming US EPA tailpipe emission regulation, as proposed in the “Multi-pollutant Rule for Model Year 2027”. The goal of this study was to introduce advanced, uncoated GPF products and measure their particulate mass (PM) reduction performance within the existing US EPA FTP vehicle testing procedures, as detailed in Code of Federal Regulations (CFR) part 1066. Various state-of-the-art GPF products were characterized for their microstructure properties with lab-bench checks for pressure drop and filtration efficiency, then pre-conditioned with an EPA-recommended 1500 mile on-road break-in, and finally were tested on an AWD vehicle chassis-dyno emissions test cell at both 25°C and -7°C ambient conditions.
Technical Paper

Three Way Catalyst with Faster Light-Off Substrates – A Promising Approach to Reduce Tailpipe Emissions

2024-01-16
2024-26-0142
The ever-tightening regulation norms across the world emphasize the magnitude of the air pollution problem. The decision to leapfrog from BS4 to BS6 – with further reduction in emission limits -showed India’s commitment to clean up its atmosphere. The overall cycle emissions were reduced significantly to meet BS6 targets [1]. However, the introduction of RDE norms in BS6.2 [1] demanded further reduction in emissions under real time operating conditions – start-stop, hard acceleration, idling, cold start – which was possible only through strategies that demanded a cost effective yet robust solutions. The first few seconds of the engine operation after start contribute significantly to the cycle gaseous emissions. This is because the thermal inertia of the catalytic converter restricts the rate at which temperature of the catalyst increases and achieves the desired “light-off” temperature.
Technical Paper

Challenges of Particulate Number above 10nm Emissions for a China 6 Compliant Vehicle to Meet Future Regulation

2023-04-11
2023-01-0377
As the official proposal for emission regulation Euro 7 has been released by European Commission, PN above 10nm is taken into consideration for the ultrafine particulate emissions control. The challenges of GPF filtration efficiency emerge for the light-duty manufactures to meet the future emission standards. In the present study, a China 6 compliant vehicle was tested to reveal its performance over the China 6 standards and potential to meet the upcoming Euro 7. Three GPF product types (Gen 1, Gen 2, and concept Gen 3) were mounted to the tested vehicle. WLTC tests were conducted on chassis dynamometer in laboratory as well as a self-designed aggressive cycle (“Base Cycle”) tests. To explore the GPFs performance for PN emissions above 10nm against the proposed limit 6.0E11 #/km, PN emission above 10nm were measured in our laboratory tests for both engine out and tailpipe as well as the PN emission above 23nm.
Technical Paper

Year in Review: Progress towards Decarbonizing Transport and Near-Zero Emissions

2023-04-11
2023-01-0396
As in the past several years, we provide here an overview of recent major regulatory and technological changes for reducing emissions from the transport and off-road sector. In the past, this review was focused mostly on improvement in engine efficiency and tailpipe emissions of criteria pollutants. However, starting last year [1] we have increased the scope to broadly address the increased focus on greenhouse gas emissions and the emergence of various non-conventional fuel pathways to achieve the various decarbonization goals. There are two broad themes that are emerging, and which we describe here. Firstly, that we are approaching the implementation of the last of the major regulations on criteria pollutant emissions from cars and trucks, led by Europe, through Euro 7 standards and US, through multi-pollutant standards for light- and heavy-duty vehicles.
Journal Article

Review of Vehicle Engine Efficiency and Emissions

2022-03-29
2022-01-0540
This review covers advances in regulations and technologies in the past year in the field of vehicular emissions. We cover major developments towards reducing criteria pollutants and greenhouse gas emissions from both light- and heavy-duty vehicles and off-road machinery. To suggest that the transportation is transforming rapidly is an understatement, and many changes have happened already since our review last year [1]. Notably, the US and Europe revised the CO2 standards for light-duty vehicles and electrification mandates were introduced in various regions of the world. These have accelerated plans to introduce electrified powertrains, which include hybrids and pure electric vehicles. However, a full transformation to electric vehicles and the required grid decarbonization will take time, and policy makers are accordingly also tightening criteria pollutant standards for internal combustion engines.
Technical Paper

A Study of Emission Durability and Ash Accumulation of “Advanced Three-way Catalyst Integrated on Gasoline Particulate Filter” for BS6 (Stage2) Applications

2021-09-22
2021-26-0182
India BS6 Stage2 (2023) regulations demand all gasoline direct injection (GDI) vehicles to meet particulate number emissions (PN) below 6x10+11# per km. Gasoline particulate filters (GPF) are a proven technology and enable high PN filtration efficiencies throughout the entire vehicle lifetime. One challenge for GPF applications could be the changing emission performance characteristics as a function of mileage due to collected ash and/or soot deposits with implications on back pressure losses. The main objective of this technical contribution is to study the above-mentioned challenges while applying Indian driving conditions and typical Indian climate and other ambient conditions. The substrate technology selected for this study is a high porosity GPF designed to enable the integration of a three-way functionality into the GPF, commonly described as catalyzed GPF (cGPF).
Technical Paper

Evolution of Tailpipe Particulate Emissions from a GTDI Mild-Hybrid SUV with a Gasoline Particulate Filter

2021-04-06
2021-01-0582
The ceramic wall-flow filter has now been globally commercialized for aftertreatment systems in light-duty gasoline engine powered vehicles. This technology, known as the gasoline particulate filter (GPF), represents a durable solution for particulate emissions control. The goal of this study was to track the evolution of tailpipe particulate and gaseous emissions of a 4-cylinder gasoline turbocharged direct injected (GTDI) 2018 North American (NA) mild-hybrid light-duty SUV, from a fresh state to the 4,000-mile, EPA certification mileage level. For this purpose, a production TWC + GPF aftertreatment system designed for a China 6b-compliant variant of this test vehicle was retrofitted in place of the North American Tier 3 Bin 85 TWC-only system. Chassis dyno emissions testing was performed at predetermined mileage points with real-world, on-road driving conducted for the necessary mileage accumulation.
Technical Paper

PN Emission Measurements and Real-Driving-Emissions (RDE) Simulation on China 6 Light-Duty Gasoline Vehicles

2021-04-06
2021-01-0588
As the China 6 light duty vehicle emission regulation is being implemented, PN becomes a challenge for vehicle type-approval emission tests. WLTC has replaced NEDC as the Type-I test cycle on the chassis dynamometer with more dynamic driving events. In addition, on-road RDE test is a challenge to calibrate the engine to meet tailpipe PN emissions because of the nature of the on-road conditions, i.e. varying ambient temperature, driving dynamics, altitude, etc. In response to China 6 requirements, GPF technology has been introduced. In this study, we pulled four China 6 compliant gasoline vehicles for the PN emission survey. The selected vehicles covered typical engine technologies including GDI/MPI with natural aspiration/turbo charger, representing the state of the art of the local engine capability. On one hand, it helps to build insight into the status of China 6 engine emission control technology through WLTC and RTS95 tests.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

Review of Vehicle Engine Efficiency and Emissions

2021-04-06
2021-01-0575
For more than two decades [1,2], Corning has served the community with an annual review of global regulatory and technological advances pertaining to emissions from internal combustion engine (ICE) driven vehicles and machinery. We continue with a review for the year 2020, which will be remembered by COVID and the significant negative impact it had on the industry. However, it also provided a glimpse of the possible improvement in air quality with reduced anthropogenic emissions. It was a year marked by goals set for climate change mitigation via reduced fossil fuel use by the transportation sector. Governments stepped up plans to accelerate the adoption of zero tailpipe emitting vehicles. However, any transformation of the transportation sector is not going to happen overnight due to the scale of the infrastructure and technology challenges. A case in point is China, which announced a technology roadmap which envisions half of the vehicles to be hybrids in 2035.
Journal Article

Anhydrous Gypsum as Diesel Ash Surrogate and Sensitivity to Ash Particle Size in Accelerated Ash Loading Studies

2021-04-06
2021-01-0585
Accelerated ash loading studies provide a cost-effective means of investigating the long-term impacts of ash accumulation in diesel particulate filters (DPFs). Despite a variety of methods adopted in previous studies for accelerated ash loading, evaluation of their impact on DPF behavior has been limited primarily to pressure drop response (with & without soot), and characterization of properties of the resulting ash deposits for comparison with samples from field testing. In the current study, the potential to use ash recovered from field DPFs to perform accelerated ash loading studies is explored. Additionally, anhydrous gypsum as a surrogate for diesel ash was investigated. Benefits of using gypsum include low cost and easy access, safety during handling and testing, and consistency from test to test. Narrow control of particle sizing and composition can help compare performance over a wide range of filter sizes and applications.
Technical Paper

System Architecture Design Suitable for Automated Driving Vehicle: Hardware Configuration and Software Architecture Design

2021-04-06
2021-01-0073
Our L2-automated driving system enabling a driver to take his/her hands off from the steering wheel is self-operating on a highway, allowing the vehicle to automatically change lanes and overtake slow-speed leading vehicles. It includes an OTA function, which can extend the ODD after the market launch. To realize these features in reasonably safer and more reliable ways, system architecture must be designed well under hardware and software implementation constraints. One such major constraint is the system must be designed to make the most out of the existing sensor configuration on the vehicle, where five peripheral radars and a front camera for ADAS as well as panoramic-view and rear-view cameras for monitoring are available. In addition, four LiDARs and a telephoto camera are newly adopted for ADS. Another constraint is the system must consist of reliable redundant components for fail-safe operation.
Technical Paper

Model Based Control for Premixed Charge Compression Ignition Diesel Engine

2020-04-14
2020-01-1150
Premixed charge compression ignition (PCCI) combustion is effective in reducing harmful exhaust gas and improving the fuel consumption of diesel engines [1]. However, PCCI combustion has a problem of exhibiting lower combustion stability than diffusive combustion [2, 3], which makes it challenging to apply to mass production engines. Its low combustion stability problem can be overcome by implementing complicated injection control strategies that account for variations in environmental and engine operating conditions as well as transient engine conditions, such as turbocharging delay, exhaust gas recirculation (EGR) delay, and intake air temperature delay. Although there is an example where the combustion mode is switched according to the intake O2 fraction [4], it requires a significant number of engineering-hours to calibrate multiple combustion modes. And besides, such switching combustion modes tends to have a risk of discontinuous combustion noise and torque.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Technical Paper

Machine Learning Based Technology for Reducing Engine Starting Vibration of Hybrid Vehicles

2019-06-05
2019-01-1450
Engine starting vibration of hybrid vehicle with Toyota hybrid system has variations even in the same vehicle, and a large vibration that occurs rarely may cause stress to the passengers. The contribution analysis based on the vibration theory and statistical analysis has been done, but the primary factor of the rare large vibration has not been clarified because the number of factors is enormous. From this background, we apply machine learning that can reproduce multivariate and complicated relationships to analysis of variation factors of engine starting vibration. Variations in magnitude of the exciting force such as motor torque for starting the engine and in-cylinder pressure of the engine and timing of these forces are considered as factors of the variations. In addition, there are also nonlinear factors such as backlash of gears as a factor of variations.
Technical Paper

Effects of the Feature Extraction from Road Surface Image for Road Induced Noise Prediction Using Artificial Intelligence

2019-06-05
2019-01-1565
Next generation vehicles driven by motor such as electric vehicles and fuel cell vehicles have no engine noise. Therefore the balance of interior noise is different from the vehicles driven by conventional combustion engine. In particular, road induced noise tends to be conspicuous in the low to middle vehicle speed range, therefore, technological development to reduce it is important task. The purpose of this research is to predict the road induced noise from the signals of sensors adopted for automatic driving for utilizing the prediction result as a reference signal to reduce road induced noise by active noise control (ANC). Using the monocular camera which is one of the simplest image sensors, the road induced noise is predicted from the road surface image ahead of the vehicle by machine learning.
Technical Paper

Effect of High RON Fuels on Engine Thermal Efficiency and Greenhouse Gas Emissions

2019-04-02
2019-01-0629
Historically, greenhouse gas (GHG) emissions standards for vehicles have focused on tailpipe emissions. However, sound environmental policy requires a more holistic well-to-wheels (WTW) assessment that includes both production of the fuel and its use in the vehicle. The present research explores the net change in WTW GHG emissions associated with moving from regular octane (RO) to high octane (HO) gasoline. It considers both potential increases in refinery emissions from producing HO fuel and potential reductions in vehicle emissions through the use of fuel-efficient engines optimized for such fuel. Three refinery configurations of varying complexity and reforming capacity were studied. A set of simulations covering different levels of HO gasoline production were run for each refinery configuration.
Technical Paper

Determine 24 GHz and 77 GHz Radar Characteristics of Surrogate Grass

2019-04-02
2019-01-1012
Road Departure Mitigation System (RDMS) is a new feature in vehicle active safety systems. It may not rely only on the lane marking for road edge detection, but other roadside objects This paper discusses the radar aspect of the RDMS testing on roads with grass road edges. Since the grass color may be different at different test sites and in different seasons, testing of RDMS with real grass road edge has the repeatability issue over time and locations. A solution is to develop surrogate grass that has the same characteristics of the representative real grass. Radar can be used in RDMS to identify road edges. The surrogate grass should be similar to representative real grass in color, LIDAR characteristics, and Radar characteristics. This paper provides the 24 GHz and 77 GHz radar characteristic specifications of surrogate grass.
Technical Paper

Development of Innovative Dynamic Torque Vectoring AWD System

2019-04-02
2019-01-0332
This paper describes the development of an innovative AWD system called Dynamic Torque Vectoring AWD for all-wheel drive (AWD) vehicles based on a front-wheel drive configuration. The Dynamic Torque Vectoring AWD system helps to achieve high levels of both dynamic performance and fuel efficiency. Significant fuel economy savings are achieved by using a new compact disconnection mechanism at the transfer and rear units, which prevents any unnecessary rotation of the propeller shaft. In addition, the system is also capable of independently distributing torque to the rear wheels by utilizing electronically controlled couplings on the left and right sides of the rear differential. This greatly enhances both on-road cornering performance and off-road driving performance.
X