Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Fatigue Life Prediction Method for Self-Piercing Rivets Considering Crack Propagation

2019-04-02
2019-01-0531
This paper describes a numerical prediction method for fatigue strength of Self Piercing Rivets (SPRs) using fracture mechanics. Recently, high strength steels and non-ferrous metals have been adopted to light weight automotive bodies. Various types of joining are proposed for multi-material bodies. It is important to predict the fatigue life of these joints using numerical simulation. However, the fatigue strength of these joints is related to sheet thickness, base materials, and loading conditions. Therefore, a large number of coupon tests are necessary to determine the S-N curve for the fatigue life prediction of joints in the automotive body. To reduce the amount of coupon testing, numerical simulation will be an efficient method in obtaining the S-N curve of these joints. The fatigue fracture process consists of two stages, crack initiation and crack growth. There are many studies about crack growth estimation methods using stress intensity factor.
Technical Paper

A Target Cascading Method Using Model Based Simulation in Early Stage of Vehicle Development

2019-04-02
2019-01-0836
In the early stages of vehicle development, it is important for decision makers to understand a feasible constraint region that satisfies all system level requirements. The purpose of this paper is to propose a target cascading method to solve for a feasible design region which satisfies all constraints of the system based on model based simulation. In this method, the feasible design region is explored by using both global optimization methods and active learning techniques. In optimization problems, the inverse problem for understanding feasibility for specific designs is defined and solved. To determine the objective functions of the inverse problem, an index representing the achievement level of constraints from system requirements is introduced. To predict feasible regions in the specific design space, a surrogate model of minimized values of the index is trained by using a kriging model.
Journal Article

Development of Strength Distributed Hot Stamp Parts

2019-04-02
2019-01-0522
1 Structural parts, such as the center pillar, are a multi-layer structure. They are a combination of high-strength panels and high-toughness panels, to control the deformation mode during a crash. If we can make this multi-layered structure as one panel, consisting of different hardness within it, we will be able to make a lightweight part. In this study, we have developed a method to fabricate a ‘lightweight center pillar’ with the following processes. First, the whole panel is hardened by quenching within the hot stamp process. Next, certain areas of the panel are softened by partial tempering. We have found that the temperature zone for softening is between A1 and A3, and it is easy to perform a rapid and accurate tempering by utilizing induction heating around the Curie temperature between A1 and A3 transformation temperature.
Technical Paper

Thermal Management of a Hybrid Vehicle Using a Heat Pump

2019-04-02
2019-01-0502
This paper presents the thermal management of a hybrid vehicle (HV) using a heat pump system in cold weather. One advantage of an HV is the high efficiency of the vehicle system provided by the coupling and optimal control of an electric motor and an engine. However, in a conventional HV, fuel economy degradation is observed in cold weather because delivering heat to the passenger cabin using the engine results in a reduced efficiency of the vehicle system. In this study, a heat pump, combined with an engine, was used for thermal management to decrease fuel economy degradation. The heat pump is equipped with an electrically driven compressor that pumps ambient heat into a water-cooled condenser. The heat generated by the engine and the heat pump is delivered to the engine and the passenger cabin because the engine needs to warm up quickly to reduce emissions and the cabin needs heat to provide thermal comfort.
Technical Paper

New Method to Achieve High Hydraulic Pressure and Improved Gear Pump Performance in Active Height Control (AHC) System

2019-04-02
2019-01-0854
Vehicle weight reduction is becoming more and more important as increasingly stringent fuel economy regulations are introduced around the world. This development improved the hydraulic gear pump performance of the next-generation Active Height Control (AHC) suspension and achieved significant weight reduction of 5 kg by eliminating the auxiliary pump accumulator. To realize the necessary high-pressure with a high flow rate, the sealing performance of the pump at the tips of the gear teeth is very important. This was achieved by developing “breaking-in” technology that shaves away the aluminum housing using the gear teeth and creates zero clearance between the teeth tips and the housing. To reduce the frictional loss torque of the pump, which was identified as an issue of this technology, it was necessary to completely shave away the initial clearance in the breaking-in process.
Technical Paper

Reference PMHS Sled Tests to Assess Submarining of the Small Female

2018-11-12
2018-22-0003
In the last decade, extensive efforts have been made to understand the physics of submarining and its consequences in terms of abdominal injuries. For that purpose, 27 Post Mortem Human Subject (PMHS) tests were performed in well controlled conditions on a sled and response corridors were provided to assess the biofidelity of dummies or human body models. All these efforts were based on the 50th percentile male. In parallel, efforts were initiated to transfer the understanding of submarining and the prediction criteria to the THOR dummies. Both the biofidelity targets and the criteria were scaled down from the 50th percentile male to the 5th percentile THOR female. The objective of this project was to run a set of reference PMHS tests in order to check the biofidelity of the THOR F05 in terms of submarining. Three series of tests were performed on nine PMHS, the first one was designed to avoid submarining, the second and third ones were designed to result in submarining.
Technical Paper

Development of New Continuously Variable Transmission for 2.0-Liter Class Vehicles

2018-04-03
2018-01-1062
Toyota has developed a new continuously variable transmission (CVT) called "Direct Shift-CVT" which is for 2.0-liter class vehicles. This CVT provided not only power transmission by a metal belt held with a conventional pulley but also additional gear mechanism. This CVT is developed to improve fuel efficiency, acceleration characteristic, and quietness. At this CVT, the startup low gear ratio is achieved by gear mechanism and the power is switched by clutches. Since the belt-pulley portion can be realized to be wide range by using only high gear ratio range, the input load into belt-pulley portion is reduced and unprecedented compact and high efficient belt-pulley portion is established. Consequently, the high efficiency in all fields from startup acceleration to high speed driving is achieved to improve fuel efficiency.
Technical Paper

Development of CFD Inverse Analysis Technology Targeting Heat or Concentration Performance Using the Adjoint Method and Its Application to Actual Components

2018-04-03
2018-01-1033
To resolve two major problems of conventional CFD-based shape optimization technology: (1) dependence of the outcome on the selection of design parameters, and (2) high computational costs, two types of innovative inverse analysis technologies based on a mathematical theory called the Adjoint Method were developed in previous studies for maximizing an arbitrary hydrodynamic performance aspect as the cost function: surface geometry deformation sensitivity analysis to identify the locations to be modified, and topology optimization to generate an optimal shape. Furthermore, these technologies were extended to transient flows by the application of the transient Adjoint Method theory. However, there are many cases around flow path shapes in vehicles where performance with respect to heat or concentration, such as the total amount of heat transfer or the flow rate of a specific gas component, is very important.
Technical Paper

New 2.0L I4 Gasoline Direct Injection Engine with Toyota New Global Architecture Concept

2018-04-03
2018-01-0370
Toyota Motor Corporation has developed a new 2.0L Inline 4- Cylinder (I4) Gasoline Direct Injection Engine, the second Naturally Aspirated (NA) engine of the Toyota New Global Architecture (TNGA) engine series, to meet our customers’ expectations for drivability, performance, and fuel economy. The high speed combustion technologies adopted previously in our 2.5 L NA conventional and Hybrid Vehicle (HV) engines for the 2018 Toyota Camry are necessary for high engine power and thermal efficiency. To adopt our high speed combustion technology on engines with different displacements, the turbulence intensity has been defined as the target index of combustion speed. The basic engine structure has been revised by using Computational Fluid Dynamics (CFD) analysis to achieve the combustion target.
Technical Paper

Development of New Hybrid Transaxle for Mid - Size Vehicle

2018-04-03
2018-01-0429
The new P710 hybrid transaxle for a mid-size 2.5-liter class vehicle was developed based on the Toyota New Global Architecture (TNGA) design philosophy to achieve a range of desired performance objects. A smaller and lighter transaxle with low mechanical loss was realized by incorporating a new gear train structure and a downsized motor. The noise of the P710 transaxle was also reduced by adopting a new damper structure.
Journal Article

Rubber Suspension Bushing Model Identified by General Design Parameters for Initial Design Phase

2018-04-03
2018-01-0693
This article proposes a rubber suspension bushing model considering amplitude dependence as a useful tool at the initial design phase. The purpose of this study is not to express physical phenomena accurately and in detail and to explore the truth academically, but to provide a useful design method for initial design phase. Experiments were carried out to verify several dynamic characteristics of rubber bushings under vibration up to a frequency of 100 Hz, which is an important frequency range when designing ride comfort performance. When dynamic characteristic theory and the geometrical properties of the force-displacement characteristic curve were considered using these dynamic characteristics as assumptions, an equation was derived that is capable of calculating the dynamic stiffness under an arbitrary amplitude by identifying only two general design parameters (dynamic stiffness and loss factor) under a reference amplitude.
Journal Article

Development of Engine Lubrication System with New Internal Gear Fully Variable Discharge Oil Pump

2017-10-08
2017-01-2431
Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
Technical Paper

Low Frequency Airborne Panel Contribution Analysis and Vehicle Body Sensitivity to Exhaust Nnoise

2017-06-05
2017-01-1865
The tendency for car engines to reduce the cylinder number and increase the specific torque at low rpm has led to significantly higher levels of low frequency pulsation from the exhaust tailpipe. This is a challenge for exhaust system design, and equally for body design and vehicle integration. The low frequency panel noise contributions were identified using pressure transmissibility and operational sound pressure on the exterior. For this the body was divided into patches. For all patches the pressure transmissibility across the body panels into the interior was measured as well as the sound field over the entire surface of the vehicle body. The panel contributions, the pressure distribution and transmissibility distribution information were combined with acoustic modal analysis in the cabin, providing a better understanding of the airborne transfer.
Technical Paper

Optimizing Transmission Loss for Lightweight Body Structures

2017-06-05
2017-01-1812
In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
Technical Paper

Toyota’s New Driveline for FR Passenger Vehicles

2017-03-28
2017-01-1130
The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
Technical Paper

Synchrotron X-Ray Visualization and Simulation for Operating Fuel Cell Diffusion Layers

2017-03-28
2017-01-1188
The key challenge in designing a high power density fuel cell is to reduce oxygen transport loss due to liquid water. However, liquid water transport from catalyst layers to channels under operating conditions is not completely understood. Toyota developed a high resolution space and time liquid water visualization technique using synchrotron x-ray (Spring-8) radiography. In addition, a simulation method was created based on computational fluid dynamics (CFD) to identify the cell performance relationship to water distribution. The relationship among gas diffusion layer (GDL) parameters, water distribution, and fuel cell performance was clarified by combining the techniques Toyota developed.
Technical Paper

Toyota New TNGA High-Efficiency Eight-Speed Automatic Transmission Direct Shift-8AT for FWD Vehicles

2017-03-28
2017-01-1093
The new eight-speed automatic transmission direct shift-8AT (UA80) is the first automatic transmission to be developed based on the Toyota New Global Architecture (TNGA) design philosophy. Commonizing or optimizing the main components of the UA80 enables compatibility with a wide torque range, including both inline 4-cylinder and V6 engines, while shortening development terms and minimizing investment. Additionally, it has superior packaging performance by optimizing the transmission size and arrangement achieving a low gravity center. It contributes to Vehicle’s attractiveness by improving driving performance and NVH. At the same time, it drastically improves fuel economy and quietness.
Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

2017-03-28
2017-01-1539
High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Journal Article

Development of Innovative Toyota 10-Speed Longitudinal Automatic Transmission

2017-03-28
2017-01-1099
Toyota Motor Corporation has developed an innovative 10-speed longitudinal automatic transmission called the Direct Shift-10AT. The Direct Shift-10AT is a significant contributor to the excellent dynamic performance of the Lexus LC500. A wide gear spread with close gear ratios allows for rhythmical shifting, smooth and powerful acceleration from a standing start, along with quiet and relaxed high- speed driving due to low engine speeds. The lock-up area is expanded to a wider range of vehicle speeds (excluding low-speed regions such as when starting off), by the adoption of a multi-plate lock-up clutch, a newly developed torque converter, and a high-precision controller. As a result, the shift control can match the driver's intended operation more directly because the main cause of the response delay (transient changes in engine speed (flare)) is eliminated. Furthermore, fuel economy is improved due to the adoption of low friction clutches.
Journal Article

Development of a New Ceramic Substrate with Gas Flow Control Functionality

2017-03-28
2017-01-0919
Emission regulations in many countries and regions around the world are becoming stricter in reaction to the increasing awareness of environment protections, and it has now become necessary to improve the performance of catalytic converters to achieve these goals. A catalytic converter is composed of a catalytically active material coated onto a ceramic honeycomb-structured substrate. Honeycomb substrates play the role of ensuring intimate contact between the exhaust gas and the catalyst within the substrate’s flow channels. In recent years, high-load test cycles have been introduced which require increased robustness to maintain low emissions during the wide range of load changes. Therefore, it is extremely important to increase the probability of contact between the exhaust gas and catalyst. To achieve this contact, several measures were considered such as increasing active sites or geometrical surface areas by utilizing substrates with higher cell densities or larger volumes.
X