Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of New 2.0-Liter Plug-in Hybrid System for the Toyota Prius

2024-04-09
2024-01-2169
Reducing vehicle CO2 emissions is an important measure to help address global warming. To reduce CO2 emissions on a global basis, Toyota Motor Corporation is taking a multi-pathway approach that involves the introduction of the optimal powertrains according to the circumstances of each region, including hybrid electric (HEVs) and plug-in hybrid electric vehicles (PHEVs), as well as battery electric vehicles (BEVs). This report describes the development of a new PHEV system for the Toyota Prius. This system features a traction battery pack structure, transaxle, and power control unit (PCU) with boost converter, which were newly developed based on the 2.0-liter HEV system. As a result, the battery capacity was increased by 1.5 times compared to the previous model with almost the same battery pack size. Transmission efficiency was also improved, extending the distance that the Prius can be driven as an EV by 70%.
Technical Paper

Development of New Motor for Electric Vehicles

2024-04-09
2024-01-2206
The world is currently facing environmental issues such as global warming, air pollution, and high energy demand. To mitigate these challenges, the electrification of vehicles is essential as it is effective for efficient fuel utilization and promotion of alternative fuels. The optimal approach for electrification varies across different markets, depending on local energy conditions and current circumstances. Consequently, Toyota has taken the initiative to offer a comprehensive lineup of battery electric vehicles (BEV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), aiming to provide sustainable solutions tailored to the unique situations and needs of each region. As part of this effort, Toyota has developed the 5th generation of hybrid electric vehicles. This paper describes the electric motor used in the new Toyota Camry which achieves high torque, high power, low losses, and compact design.
Technical Paper

Inverse Analysis of Road Contact Force and Contact Location Using Machine Learning with Measured Strain Data

2024-04-09
2024-01-2267
To adapt to Battery Electric Vehicle (BEV) integration, the significance of protective designs for battery packs against ground impact caused by road debris is very high, and there is also a keen interest in the feasibility assessment technique using Computer-Aided Engineering (CAE) tools for prototype-free evaluations. However, the challenge lies in obtaining real-world empirical data to verify the accuracy of the predictive CAE model. Collecting real-world data using actual battery pack can be time-consuming, costly, and accurately ascertaining the precise direction, magnitude, and location of the force applied from the road to the battery pack poses a challenging task. Therefore, in this study, we developed a methodology using machine learning, specifically Gaussian process regression (GPR), to perform inverse analysis of the direction, magnitude, and location of vehicle-road contact forces during rough road conditions.
Technical Paper

Reduced Order Modeling of Engine Coolant Temperature Model in Plug-In Hybrid Electric Vehicles

2024-04-09
2024-01-2008
In recent years, swift changes in market demands toward achieving carbon neutrality have driven significant developments within the automotive industry. Consequently, employing computer simulations in the early stages of vehicle development has become imperative for a comprehensive understanding of performance characteristics. Of particular importance is the cooling performance of vehicles, which plays a vital role in ensuring safety and overall performance. It is crucial to predict optimal cooling performance, particularly about the heat generated by the powertrain during the initial phases of vehicle development. However, the utilization of thermal analysis models for assessing vehicle cooling performance demands substantial computational resources, rendering them less practical for evaluating performance associated with design changes in the planning phase.
Technical Paper

Lightweight Design Enabled by Innovative CAE Based Development Method Using Topology Optimization

2024-04-09
2024-01-2454
Carbon neutrality has become a significant target. One essential parameter regarding energy consumption and emissions is the mass of vehicles. Lightweight design improves the result of vehicle life cycle assessment (LCA), increases efficiency, and can be a step towards sustainability and CO2 neutrality. Weight reduction through structural optimization is a challenging task. Typical design development procedures have to be overcome. Instead of just a facelift or the creation of a derivative of the predecessor design, completely alternative design creation methods have to be applied. Automated structural optimization is one tool for exploring completely new design approaches. Different methods are available and weight reduction is the focus of topology optimization. This paper describes a fatigue life homogenization method that enables the weight reduction of vehicle parts. The applied CAE process combines fatigue life prediction and topology optimization.
Technical Paper

Effects of Ethanol Blending on the Reactivity and Laminar Flame Speeds of Gasoline, Methanol-to-Gasoline, and Ethanol-to-Gasoline Surrogates

2024-04-09
2024-01-2817
Ethanol blending is one method that can be used to reduce knock in spark ignition engines by decreasing the autoignition reactivity of the fuel and modifying its laminar flame speed. In this paper, the effects of ethanol blending on knock propensity and flame speed of petroleum and low-carbon gasoline fuels is analyzed. To do so, surrogate fuels were formulated for methanol-to-gasoline (MTG) and ethanol-to-gasoline (ETG) based on the fuels’ composition, octane number, and select physical properties; and 0-D and 1-D chemical kinetics simulations were performed to investigate reactivity and laminar flame speed, respectively. Results of MTG and ETG were compared against those of PACE-20, a well-characterized surrogate for regular E10 gasoline. Similarly to PACE-20, blending MTG and ETG with ethanol increases the fuel’s research octane number (RON) and sensitivity.
Technical Paper

The New Toyota 2.4L L4 Turbo Engine with 8AT and 1-Motor Hybrid Electric Powertrains for Midsize Pickup Trucks

2024-04-09
2024-01-2089
Toyota has developed a new 2.4L L4 turbo (2.4L-T) engine with 8AT and 1-motor hybrid electric powertrains for midsize pickup trucks. The aim of these powertrains is to fulfill both strict fuel economy and emission regulations toward “Carbon Neutrality”, while exceeding customer expectations. The new 2.4L L4 turbocharged gasoline engine complies with severe Tier3 Bin30/LEVIII SULEV30 emission regulations for body-on-frame midsize pickup trucks improving both thermal efficiency and maximum torque. This engine is matched with a newly developed 8-speed automatic transmission with wide range and close step gear ratios and extended lock-up range to fulfill three trade-off performances: powerful driving, NVH and fuel economy. In addition, a 1-motor hybrid electric version is developed with a motor generator and disconnect clutch between the engine and transmission.
Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Technical Paper

Evaluation of Fully Sustainable Low Carbon Gasoline Fuels Meeting Japanese E10 Regular and Premium Octane Specifications

2023-09-29
2023-32-0165
Reducing the carbon emissions associated with ICE- containing vehicles is a complimentary step towards carbon neutrality alongside the introduction of vehicles using newer energy vectors. In this study, the authors investigated emissions and efficiency impact of fully renewable E10-grade gasoline fuels blended with sustainable components at both 90 RON and 96 RON in comparison with reference regular E0 and premium certification gasolines across a range of ICE vehicle applications. Both renewable fuels were blended to the Japan JIS K2022 2012 E10 specification. The study shows very low carbon gasolines are technically feasible and potentially have an important role to play in decarbonizing both new advanced technology ICE vehicles and, critically, the existing ICE vehicle parc in the transition towards a zero emissions future.
Technical Paper

Evaluation of Distinctive Oil Bores in Engine Crankshaft for Friction Reduction Purpose

2023-09-29
2023-32-0160
Internal combustion engines will play an important role in the coming decades, even considering targets of carbon neutrality for a sustainable future. This will be especially true in regions where pure electrified vehicle implementation is not yet practical, or for long-range heavy load transportation purposes, even in regions where BEV infrastructure is well established. HEV/PHEV’s importance and contribution to CO2 emission reduction together with carbon neutral fuels such as hydrogen, e-fuel and biomass fuel etc. will remain crucial regardless of region/transport sectors. In this respect, brake thermal efficiency improvements by friction reduction needs further investigation. This is especially so with the crankshaft bearings’ lubrication system, which can provide as much as 40% of the total mechanical losses in some cases. It is a well-established fact, that plain bearings require a minimum oil flow volume to maintain their real function rather than oil pressure.
Technical Paper

New Concept Exhaust Manifold for Next-Generation HEV and PHEV

2023-09-29
2023-32-0062
HEV and PHEV require an improved aftertreatment system to clean the exhaust gas in various driving situations. The efficiency of aftertreatment system is significantly influenced by the residence time of the gas in a catalyst which gas flow has generally strong pulsation. Simulation showed up to 70% reduction of exhaust gas emission if the pulsation could be completely attenuated. A new concept exhaust manifold was designed to minimize pulsation flow by wall impingement, with slight increase of pressure loss. Experimental results with new concept exhaust manifold showed exhaust gas emission were reduced 16% at cold condition and 40% at high-load condition.
Technical Paper

Vehicle Simulations development to predict Electric field level distribution based on GB/T18387 measurement method

2023-09-29
2023-32-0071
The development of electric vehicles has been progressed, rapidly, to achieve Carbon neutrality by 2050. There have been increasing concerns about Electromagnetic Compatibility (EMC) performance due to increasing power for power trains of vehicles. Because same power train system expands to some vehicles, we have developed numerical simulations in order to predict the vehicle EMC performances. We modeled a vehicle which has inverter noises by numerical simulation to calculate electric fields based on GB/T18387. We simulated the common mode noise which flows through the shielding braid of the high voltage wire harnesses. As a result, it is confirmed a correlation between the electric fields calculated by numerical simulation and the measured one.
Technical Paper

Development of 2nd-Generation Solar Charging System and Generating Performance in the USA

2023-04-11
2023-01-0704
In response to the steadily worsening impact of global warming, greater efforts are being made to achieve carbon neutrality. Toyota Motor Corporation developed an in-vehicle solar charging system that utilizes generated solar energy to drive the vehicle. While the ignition is off, energy generated from a solar panel is used to charge the main battery. Then, while the ignition is on, this energy is supplied to the 12 V system to reduce consumption of the main battery energy, thereby helping to improve the electric driving range. This 1st-generation solar charging system adopted in the Prius PHV in 2017 was the first mass-produced in-vehicle solar charging system in the world. In 2022, the 2nd-generation solar charging system was developed and adopted in the bZ4X, including performance improvements such as a newly designed solar roof and lightweight charging system.
Technical Paper

Investigation of Compressor Deposit in Turbocharger for Gasoline Engines (Part 2: Practical Application to Turbocharger)

2023-04-11
2023-01-0412
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. Though CO2 emission has been reduced through electrification, internal combustion engines equipped in vehicles such as Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV) are still necessary for the foreseeable future, and continuous efforts to improve fuel economy are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been being researched as the next generation of turbocharged gasoline engines. It is known that an increase of the boost pressure causes deposit formation, which decrease the turbocharger efficiency, in the turbocharger compressor housing. To avoid the efficiency loss due to deposit, air temperature at compressor outlet has to be limited low.
Technical Paper

Development of e-AWD Hybrid System with Turbo Engine for SUVs

2023-04-11
2023-01-0470
This paper describes the development of a new e-AWD hybrid system developed for SUVs. This hybrid system consists of a high-torque 2.4-liter turbocharged engine and a front unit that contains a 6-speed automatic transmission, an electric motor, and an inverter. It also includes a rear eAxle unit that contains a water-cooled high-power motor, an inverter, and a reduction gear, as well as a bipolar nickel-metal hydride battery. By combining a turbo engine that can output high torque across a wide range of engine rpm with two electric motors (front and rear), this system achieves both smooth acceleration with a torquey driving feeling and rapid response when the accelerator pedal is pressed. In addition, new AWD control using the water-cooled rear motor realized more stable cornering performance than the previous e-AWD system.
Technical Paper

Development of Control System for Parallel Hybrid System with Turbo Engine

2023-04-11
2023-01-0547
This paper describes a new control technology that coordinates the operation of multiple actuators in a new hybrid electric vehicle (HEV) system consisting of a turbocharged engine, front and rear electric motors, two clutches, and a 6-speed automatic transmission. The development concept for this control technology is to achieve the driver’s desired acceleration G with a natural feeling engine speed. First, to realize linear acceleration G even while the engine is starting from EV mode, clutch hydraulic pressure reduction control is implemented. Furthermore, the engine start timing is optimized to prevent delayed drive force response by predicting the required maximum power during cranking. Second, to realize linear acceleration, this control selects the proper gear position based on the available battery power, considering noise and vibration (NV) restrictions and turbocharging response delays.
Technical Paper

Development of Charging System for bZ4X

2023-04-11
2023-01-0483
In 2022, Toyota launched new battery electric vehicle (BEV), the Toyota bZ4X. Unlike gasoline-powered vehicles, BEVs require charging. Users want increased range and shorter charging times. bZ4X's charging system increased range and shortened AC/DC charging time compared to the Lexus UX300e launched in 2020. A new unit called Electricity Supply Unit (ESU) was developed that integrated a DCDC converter, on-board charger, DC relays, and a branch box for power distribution function into a single unit. The design moved the branch box out of the battery pack to make room for the battery capacity, and it integrated the power conversion function into a single unit, making it more compact than if each unit were mounted separately. A 7 kW or 11 kW on-board charger is included with the vehicle. The 7 kW on-board charger is inside ESU; the 11 kW charger is external to the ESU.
Technical Paper

Development of 50% Thermal Efficiency S.I. Engine to Contribute Realization of Carbon Neutrality

2023-04-11
2023-01-0241
To prevent global warming, many countries are making efforts to reduce CO2 emissions toward achieving 2050 carbon neutrality. In order to reduce CO2 concentration quickly, in addition to spread of renewable energy and expansion of BEV, it is also important to reduce CO2 emissions by improving thermal efficiency of ICE (internal combustion engine) and utilizing carbon neutral fuels such as synthetic fuels and biofuels. It is well known that lean burn is an effective technology to increase thermal efficiency of engine highly. However, since NOx emission from lean burn engine cannot be reduced with three-way catalyst, there have been issues such as complicated system configuration due to the addition of NOx reduction catalyst or limiting lean operation to narrow engine speed and load in order to meet emission regulation of each country.
Technical Paper

Development of Powertrain System and Battery for BEV

2023-04-11
2023-01-0518
Toyota has launched a new BEV which incorporates our newest evolutions in BEV powertrain systems and vehicle platform innovations. The new BEV uses newly developed large format battery cells, which, in addition to achieving our key performance and safety targets, also incorporates new technologies resulting in improved battery energy density and a reduction in battery deterioration. For the BEV battery cooling, to enhance safety, the cooling plate and the battery cells are separated by a chamber structure. The battery pack also incorporates a newly developed high resistance coolant with low conductivity. The new BEV improves system efficiency by leveraging some technologies that were originally developed for HEV and developing new systems. For example, radiant heating and a newly developed heat pump system improve EV driving range. This presentation will introduce our new battery technologies and discuss our new BEV system.
Technical Paper

Development of the New 2.0L Hybrid System for Prius

2023-04-11
2023-01-0474
It is necessary for us to reduce CO2 emissions in order to hold down global warming which is advancing year by year. Toyota Motor Corporation believes that not only the introduction of BEVs but also the sale of the hybrid vehicles must spread in order to achieve the necessary CO2 reduction. Therefore, we planned to improve the attractiveness of future hybrid vehicles. Prius has always made full use of hybrid technologies and leading to significant CO2 reduction. Toyota Motor Corporation has developed a 2.0L hybrid system for the new Prius. We built the system which could achieve a comfortable drive along following the customer’s intention while improving the fuel economy more than a conventional system. The engine improves on both output and thermal efficiency. The transaxle decreases mechanical loss by downsizing the differential, and adoption of low viscosity oil.
X