Refine Your Search

Topic

Author

Search Results

Technical Paper

Reference PMHS Sled Tests to Assess Submarining of the Small Female

2018-11-12
2018-22-0003
In the last decade, extensive efforts have been made to understand the physics of submarining and its consequences in terms of abdominal injuries. For that purpose, 27 Post Mortem Human Subject (PMHS) tests were performed in well controlled conditions on a sled and response corridors were provided to assess the biofidelity of dummies or human body models. All these efforts were based on the 50th percentile male. In parallel, efforts were initiated to transfer the understanding of submarining and the prediction criteria to the THOR dummies. Both the biofidelity targets and the criteria were scaled down from the 50th percentile male to the 5th percentile THOR female. The objective of this project was to run a set of reference PMHS tests in order to check the biofidelity of the THOR F05 in terms of submarining. Three series of tests were performed on nine PMHS, the first one was designed to avoid submarining, the second and third ones were designed to result in submarining.
Technical Paper

Toyota’s New Driveline for FR Passenger Vehicles

2017-03-28
2017-01-1130
The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
Journal Article

Low-viscosity Gear Oil Technology to Improve Wear at Tapered Roller Bearings in Differential Gear Unit

2016-10-17
2016-01-2204
Torque loss reduction at differential gear unit is important to improve the fuel economy of automobiles. One effective way is to decrease the viscosity of lubricants as it results in less churning loss. However, this option creates a higher potential for thin oil films, which could damage the mechanical parts. At tapered roller bearings, in particular, wear at the large end face of rollers and its counterpart, known as bearing bottom wear is one of major failure modes. To understand the wear mechanism, wear at the rolling contact surface of rollers and its counterpart, known as bearing side wear, was also observed to confirm the wear impact on the tapered roller bearings. Because gear oils are also required to avoid seizure under extreme pressure, the combination of a phosphorus anti-wear agent and a sulfurous extreme pressure agent are formulated.
Journal Article

A Custom Integrated Circuit with On-chip Current-to-Digital Converters for Active Hydraulic Brake System

2016-04-05
2016-01-0091
This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
Technical Paper

Analysis for Vibration Caused by Starter Shaft Resonance

2016-04-05
2016-01-1319
It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration using virtual engine specifications and a virtual vehicle frame. In our former study, we showed the 1D physical power plant model with electrical starter, battery that can predict combustion transient torque, combustion heat energy and fuel efficiency. The simulation result agreed with measured data. For idling stop system, the noise and vibration during start up is important factor for salability of the vehicle. In this paper, as an application of the 1D physical power plant model (engine model), we will show the result of analysis that is starter shaft resonance and the effect on the engine mount vibration of restarting from idle stop. First, an engine model for 3.5L 6cyl NA engine was developed by energy-based model using VHDL-AMS. Here, VHDL-AMS is modeling language registered in IEC international standard (IEC61691-6) to realize multi physics on 1D simulation.
Technical Paper

Solar Module Laminated Constitution for Automobiles

2016-04-05
2016-01-0351
Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed.
Technical Paper

Development of Bicycle Carrier for Bicyclist Pre-Collision System Evaluation

2016-04-05
2016-01-1446
According to the U.S. National Highway Traffic Safety Administration, 743 pedal cyclists were killed and 48,000 were injured in motor vehicle crashes in 2013. As a novel active safety equipment to mitigate bicyclist crashes, bicyclist Pre-Collision Systems (PCSs) are being developed by many vehicle manufacturers. Therefore, developing equipment for evaluating bicyclist PCS is essential. This paper describes the development of a bicycle carrier for carrying the surrogate bicyclist in bicyclist PCS testing. An analysis on the United States national crash databases and videos from TASI 110 car naturalistic driving database was conducted to determine a set of most common crash scenarios, the motion speed and profile of bicycles. The bicycle carrier was designed to carry or pull the surrogate bicyclist for bicycle PCS evaluation. The carrier is a platform with a 4 wheel differential driving system.
Journal Article

High Efficiency Electromagnetic Torque Converter for Hybrid Electric Vehicles

2016-04-05
2016-01-1162
A new concept of an electromagnetic torque converter for hybrid electric vehicles is proposed. The electromagnetic torque converter, which is an electric system comprised of a set of double rotors and a stator, works as a high-efficiency transmission in the driving conditions of low gear ratio including a vehicle moving-off and as a starting device for an internal combustion engine. Moreover, it can be used for an electric vehicle driving as well as for a regenerative braking. In this concept, a high-efficiency drivetrain system for hybrid electric vehicles is constructed by replacing a fluid-type torque converter with the electromagnetic torque converter in the automatic transmission of a conventional vehicle. In this paper, we present the newly developed electromagnetic torque converter with a compact structure that enables mounting on a vehicle, and we evaluate its transmission efficiency by experiment.
Journal Article

Clarification of Transient Characteristics by Coupled Analysis of Powertrains and Vehicles

2016-04-05
2016-01-1314
With the goal of improving drivability, this research aimed to clarify the mechanism of vehicle longitudinal acceleration, focusing on tip-in acceleration. Conventional typical analysis methods include experimental modal and model-based analysis. However, since the former requires the measurement of impulses and other input forces while the vehicle is stopped, measurement under actual driving conditions is difficult. The latter requires characteristic values such as the stiffness and damping coefficients to be identified in advance, which cannot be achieved either easily or precisely. Therefore, this paper proposes a new experiment-based analysis method. This method enables the acquisition of engine torque and transmission torque/force by measuring only the acceleration values of some components under driving conditions.
Technical Paper

Development of an Electronically Controlled Brake System for Fuel-efficient Vehicles

2016-04-05
2016-01-1664
To solve various environmental problems, fuel-efficient vehicles that reduce CO2 emissions as well as exhaust gas emissions have been developed. In such vehicles, a regenerative brake is used to further reduce fuel consumption. Because the market size for such vehicles is expanding, a brake system is required that can be used in a wide range of vehicles extending from internal combustion engine vehicles (ICEVs) to electric vehicles (EVs). In addition, issues such as deceleration fluctuation and brake pedal fluctuation arise because the regenerative brake force is dependent on the vehicle speed. This paper presents a brake system configuration and its element technologies that can replace existing brake systems in different vehicles ranging from ICEVs to EVs. The proposed system can realize a regenerative cooperative brake not only by replacing the brake booster unit but also without replacing the modulator.
Technical Paper

Study of Unsteady Aerodynamics of a Car Model in Dynamic Pitching Motion

2016-04-05
2016-01-1609
The unsteady aerodynamic loads produced due to vehicle dynamic motions affect vehicle dynamic performance attributes such as straight-line stability or handling characteristics. To improve these dynamic performances, understanding the detailed mechanisms by which unsteady aerodynamic loads are caused during dynamic motions and the effects of unsteady aerodynamic loads on vehicle dynamic performance are needed. This paper describes the numerical study of unsteady aerodynamics of a 1/4 scale car model in dynamic pitching motion to clarify the detailed mechanisms by which unsteady aerodynamic loads are caused during the motion. Vortical structures around front wheelhouse and front under side of the body are analyzed by introducing schematic views to understand the mechanisms of unsteady flow fields. Furthermore, effects of aerodynamic devices devised based on the analyses on unsteady aerodynamics are discussed.
Technical Paper

Finite Element Modeling Method of Vibro-Acoustic Systems for Mid-Frequency Simulation

2016-04-05
2016-01-1355
Current vehicle acoustic performance prediction methods, CAE (computer aided engineering) or physical testing, have some difficulty predicting interior sound in the mid-frequency range (300 to 1000 Hz). It is in this frequency range where the overall acoustic performance becomes sensitive to not only the contributions of structure-borne sources, which can be studied using traditional finite element analysis (FEA) methods, but also the contribution of airborne noise sources which increase proportional to frequency. It is in this higher frequency range (>1000 Hz) that physical testing and statistical CAE methods are traditionally used for performance studies. This paper will discuss a study that was undertaken to test the capability of a finite element modeling method that can accurately simulate air-borne noise phenomena in the mid-frequency range.
Journal Article

Development of New Electronically Controlled Hydraulic Unit for Various Applications

2016-04-05
2016-01-1660
The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
Technical Paper

Vehicle Interior Noise and Vibration Reduction Method Using Transfer Function of Body Structure

2011-05-17
2011-01-1692
To reduce interior noise effectively in the vehicle body structure development process, noise and vibration engineers have to first identify the portions of the body that have high sensitivity. Second, the necessary vibration characteristics of each portion must be determined, and third, the appropriate body structure for achieving the target performance of the vehicle must be realized within a short development timeframe. This paper proposes a new method based on the substructure synthesis method which is effective up to 200Hz. This method primarily utilizes equations expressing the relationship between driving point inertance change at arbitrary body portions and the corresponding sound pressure level (SPL) variation at the occupant's ear positions under external force. A modified system equation was derived from the body transfer functions and equation of motion by adding a virtual dynamic stiffness expression into the dynamic stiffness matrix of the vehicle.
Journal Article

FEM System Development for Dynamic Response Analysis of Acoustic Trim

2009-05-19
2009-01-2213
The multilayer vehicle trim is well known for its effective influence upon noise and vibration characteristics not only in the high-frequency range but also in the low and mid-frequency ranges. FEM technologies which represent the accurate stiffness, mass and damping of trim parts such as the dash silencer and the floor carpet are essential in order to extend current body FEM capability to the road noise and the engine noise issues generated in the mid-frequency range. Conventional modeling methodologies such as local impedance and/or spring-mass modeling that express absorption and insulation properties of acoustic trim contain limitations in the mid-frequency range. There are few reliable FEM technologies to create practical vehicle models that represent the precise characteristics of the trim. In this paper, poroelastic modeling of acoustic multilayer trim was established by employing Biot theory.
Journal Article

Prediction of Low Frequency Vibration Caused by Power Train Using Multi-Body Dynamics

2009-05-19
2009-01-2193
1 To predict accurately low frequency vibration caused by the power train, it is essential to consider both the non-steady state characteristics of the engine exciting force and the frequency and amplitude dependent non-linear characteristics of the various components of the transfer system. Conventional steady-state linear analysis using finite element methods (FEM) is unable to handle these characteristics, and as a result, its prediction accuracy is insufficient. This research is based on a multi-body dynamics (MBD) model that is capable of handling non-steady state and non-linear analysis, into which in-cylinder pressure prediction methods were incorporated. The technology developed took into consideration the non-linear characteristics of the transfer system and thereby enabled highly accurate predictions of all systems associated with the vibration reaching the vehicle body.
Technical Paper

Development of Crawl Control

2008-04-14
2008-01-1227
Toyota Motor Corporation has already designed and developed vehicle brake control systems for relatively low speed off-road driving, such as Downhill Assist Control, Hill-start Assist Control and Active Traction Control. Though off-road utility is improved by virtue of these systems, in specific situations actual performance still depends on driving technique since the driver is required to control the accelerator pedal. Toyota has integrated these existing systems, and developed a new driving technology for off-road driving called “Crawl Control.” Crawl Control automatically modulates brake torque and drive torque to help keep the vehicle speed constant and slow. Unskilled drivers can thereby attain improved capabilities in places where high-level driving techniques are required. This system also reduces the effort required to control the accelerator and the brake pedal. This paper presents a new control algorithm for the realization of this Crawl Control system.
Technical Paper

Development of Reduction Method for Whirl Noise on Turbocharger

2007-10-29
2007-01-4018
The whirl noise on turbochargers is generated by the self-induced vibration of the oil film in the bearing system. The noise is characterized by its frequency behavior that doesn't increase proportionately to the turbo shaft speed. It tends to be felt annoying. In this paper, to improve the whirl vibration, a statistical analysis approach was applied to the bearing specifications. The results from experiments showed that the bearing clearances played an important role in the reduction of the whirl vibration. To further investigate into this phenomenon, the shaft oscillation behavior was measured. And a vibration simulation program for the turbocharger bearing system was also developed.
Technical Paper

Development of an Engine Torque Estimation Model: Integration of Physical and Statistical Combustion Model

2007-04-16
2007-01-1302
Recent engine systems have become complex due to the requirements of fuel efficiency, exhaust gas emission control and good drivability. To decrease engine development period, model-based development has been adopted [1]. For torque-based vehicle control, engine torque estimation models are necessary. Simple mean-value torque models are available but these models require large amount of test data for development and validation. In addition, they cannot estimate transient torque precisely. On the other hand, complex physical models require considerable time for modeling and simulation. In order to decrease modeling time and retain model accuracy, the Wiebe function is utilized to calculate the heat release rate.
Technical Paper

Characteristics of Vehicle Stability Control's Effectiveness Derived from the Analysis of Traffic Accident Data Statistics

2004-10-18
2004-21-0074
Vehicle Stability Control (VSC) is a system designed to help drivers when skidding or unstable vehicle behavior is about to occur. We have studied the characteristics of VSC in reducing accidents by analyzing accident data statistics in Japan. The results indicate that VSC is effective in reducing single car accidents and head-on collisions with other automobiles. In these accidents, the analysis showed that VSC may be more helpful in reducing a larger number of accidents in the higher speed range where vehicle dynamics plays a greater part. It also showed that VSC may contribute to reducing accidents that result from unstable vehicle behavior. VSC demonstrated more effectiveness in reducing accidents involving lateral & rear impacts than those of frontal impacts, and in reducing accidents on wet & snowy/icy roads than those on dry roads.
X