Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

New Combustion Concept for Turbocharged Gasoline Direct-Injection Engines

2014-04-01
2014-01-1210
The advantages of gasoline direct-injection are intake air cooling due to fuel vaporization which reduces knocking, additional degrees of freedom in designing a stratified injection mixture, and capability for retarded ignition timing which shortens catalyst light-off time. Stratified mixture combustion designs often require complicated piston shapes which disturb the fluid flow in the cylinder, leading to power reduction, especially in turbocharged gasoline direct-injection engines. Our research replaced the conventional shell-type shallow cavity piston with a dog dish-type curved piston that includes a small lip to facilitate stratification and minimize flow disturbance. As a result, stable stratified combustion and increased power were both achieved.
Technical Paper

Combustion Improvement of CNG Engines by Hydrogen Addition

2011-08-30
2011-01-1996
This research aimed to identify how combustion characteristics are affected by the addition of hydrogen to methane, which is the main components of natural gas, and to study a combustion method that takes advantage of the properties of the blended fuel. It was found that adding hydrogen did not achieve a thermal efficiency improvement effect under stoichiometric conditions because cooling loss increased. The same result was obtained under EGR stoichiometric conditions. In contrast, under lean burn conditions, higher thermal efficiency and lower NOx than with methane combustion was achieved by utilizing the wide flammability range of hydrogen to expand the lean limit. Although NOx can be decreased easily by the addition of large quantities of hydrogen, the substantially lower energy density of the fuel causes a substantial reduction in cruising range. Consequently, this research improved the combustion of a CNG engine by increasing the tumble ratio to 1.8.
Technical Paper

Application of a New Combustion Concept to Direct Injection Gasoline Engine

2000-03-06
2000-01-0531
A direct injection (DI) gasoline engine having a new stratified charge combustion system has been developed. This new combustion process (NCP) was achieved by a fan-shaped fuel spray and a combustion chamber with a shell-shaped cavity in the piston. Compared with the current Toyota D-4 engine, wider engine operating area with stratified combustion and higher output performance were obtained without a swirl control valve (SCV) and a helical port. This report presents the results of combustion analyses to optimize fuel spray characteristics and piston cavity shapes. Two factors were found to be important for achieving stable stratified combustion. The first is to create a ball-shaped uniform mixture cloud in the vicinity of the spark plug. The optimum ball-shaped mixture cloud is produced with a fuel spray having early breakup characteristics and uniform distribution, and a suitable side wall shape in the piston cavity to avoid the dispersion of the mixture.
X