Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Study of High Efficiency Zero-Emission Argon Circulated Hydrogen Engine

2010-04-12
2010-01-0581
The potential of high efficiency zero-emission engines fueled by hydrogen, which is regarded as a promising form of energy for the future, is being researched. The argon circulated hydrogen engine [ 1 ] is one system theoretically capable of achieving both high efficiency and zero emissions, and its feasibility for use in vehicles has been studied. Specifically, tests were performed to verify the following issues. It was examined whether stable hydrogen combustion could be achieved under an atmosphere of argon and oxygen, which has a high specific heat ratio, and whether the substantial thermal efficiency improvement effect of the argon working gas could be achieved. An argon circulation system was also studied whereby steam, which is the combustion product of the hydrogen and oxygen emitted from the engine, is separated by condensation to enable the remaining argon to be re-used.
Technical Paper

Development of Direct Injection Gasoline Engine - Study of Stratified Mixture Formation

1997-02-24
970539
Effects of spray characteristics for stratified combustion of direct injection gasoline engine have been researched. The highly functional piezoelectric (PZT) injector was selected for this research. A hole and swirl nozzle were examined in a wide range of fuel pressure. The hole nozzle aims to make stratified mixture formation by vaporizing fuel on the piston, and the swirl nozzle aims to do so in the air above the piston by utilizing the spray characteristic of lower penetration and higher dispersibility. Both sprays could realize stable stratified combustion. The stability mainly depends on the combination of spray characteristic and piston cavity shape, and the swirl air motion which strength changes corresponding to engine operating conditions. The hole nozzle requires high, and the swirl nozzle less fuel pressure. Even by a large amount of EGR, stratified combustion has the advantage of combustion stability, and is useful to reduce exhaust emissions, especially NOx emissions.
X