Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of an Integrated System of 4WS and 4WD by H∞ Control

A control law for integrating 4WS and 4WD systems is presented. It is based upon a non-linear vehicle model in which the lateral force acting on the tires changes according to the tire slip angle, slip ratio and the load. The purpose of the system is to make the actual yaw rate follow the desired yaw rate. A two-degree-of-freedom control structure has been devised and variable transformation is used to linearize the non-linear model so that H∞ control theory can be applied to design the feedback compensator. A new control theory is used to calculate optimum command values for the 4WS and 4WD actuators. Moreover, adaptive logic is added to reduce the desired yaw rate as the tires approach the limits of adhesion. Simulations and experiments prove the system greatly improves stability during cornering.
Technical Paper

Measuring System of Transient Temperature Distribution on the Brake Disc Rotor

A system to measure transient temperature distribution on the brake disc rotor at high speed braking has been developed and its measuring principle and configuration were discussed in this paper. This system consists of two revolution sensors and two sets of optical fiber array, photoelectric elements, and microprocessor, which fiber array is so arranged that it faces the brake disc rotor. This new system has the following features: (1) Measuring is made using a visible radiation wavelength range for red hot temperatures higher than 550°C.