Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Two-Dimensional Vehicle Acceleration Sensor Applied with Magnetic Fluid

1992-09-01
922125
Sensors which can detect minimal acceleration such as ± 9.8 m/sec2 in longitudinal and lateral direction of a vehicle, for DC to 20 Hz range, are required to control ABS (anti-lock braking system) or suspension system. To fulfill these requirements, we have developed a one-dimensional acceleration sensor, using magnetic fluid, to control the vehicle. In 1992, we submitted a paper on this sensor at the SAE International Congress and Exposition. Based on this one-dimensional acceleration sensor, we have developed an acceleration sensor which can detect two dimensional acceleration using a single inertia mass. This sensor is compact and can detect minimal acceleration with high accuracy. Spring and damping functions were obtained via the adoption of magnetic fluid, as in the case of the former one-dimensional acceleration sensor. This sensor can sustain mechanical shocks.
Technical Paper

Vehicle Acceleration Sensor Applied with Magnetic Fluid

1992-02-01
920475
In vehicle control systems such as ABS (anti-lock braking system) or active suspension control, sensors for detecting longitudinal and/or lateral acceleration of vehicles (acceleration of up to ± 9.8 m/s2, with frequency range of DC to 20 Hz) is necessary. The principle of acceleration detection for this sensor is as follows. A permanent magnet levitates steadily in magnetic fluid by the action of the magnetic field generated by the magnet itself. The magnet moves by the application of acceleration on the mass of the magnet. This change of position of the magnet is detected by the Hall element, and thus acceleration is measured as an electrical signal. This sensor consists of only magnetic fluid, a permanent magnet, housing, a pair of Hall elements and an electronic circuit.
X