Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Effect of California Phase 2 Reformulated Gasoline Specifications on Exhaust Emission Reduction; Part 3

1997-10-01
972851
In order to investigate the effect of sulfur and distillation properties on exhaust emissions, emission tests were carried out using a California Low Emission Vehicle (LEV) in accordance with the 1975 Federal Test Procedure ('75 FTP). To study the fuel effect on the exhaust emissions from different systems, these test results were compared with the results obtained from our previous studies using a 92MY vehicle for California Tier 1 standards and a 94MY vehicle for California TLEV standards. (1)(2) First, the sulfur effect on three regulated exhaust emissions (HC, CO and NOx) was studied. As fuel sulfur was changed from 30 to 300 ppm, the exhaust emissions from the LEV increased about 20% in NMHC, 17% in CO and 46% in NOx. To investigate the recovery of the sulfur effect, the test fuel was changed to 30 ppm sulfur after the 300 ppm sulfur tests. The emission level did not recover to that of the initial 30 ppm sulfur during three repeats of the FTP.
Technical Paper

Effects of California Phase 2 Reformulated Gasoline Regulations on Exhaust Emission Reduction: Part 2

1995-10-01
952502
The 50% and 90% distillation temperature (T50 & T90), aromatics, olefins and sulfur content are regulated in California Phase2 Reformulated Gasoline. The effects of these properties on the exhaust emissions were investigated. Twelve test fuels with little interaction between T50, T90, aromatics and olefins were prepared. Exhaust emissions were measured using a TLEV according to 1975 Federal Test Procedure (75 FTP). T50 had a large effect on exhaust HC emissions. T90 also affected HC emissions. Both increasing and decreasing T50, T90 showed increasing exhaust HC emissions. These results suggest that an optimum range of T50 and T90 exist for lowering exhaust HC emissions. The effects of sulfur on exhaust emissions were also investigated. A Pt/Rh type catalyst (production type) and a Pd type catalyst (prototype) were prepared. These catalysts were put on a 94MY TLEV. Increase of sulfur lead to increase of the exhaust emissions with both catalysts.
Technical Paper

Effects of Gasoline and Gasoline Detergents on Combustion Chamber Deposit Formation

1994-10-01
941893
Engine dynamometer tests were conducted to evaluate the effect of detergent additives and gasoline components on Combustion Chamber Deposits (CCD). Additives with polyether amine (PEA) and with polyolefin amine (POA) chemicals were used. Three kinds of POA additives were used. Our results show that some kinds of additives and aromatics in gasoline increase CCD formation. Different polyolefin detergents show different tendency of CCD formation. The amount of CCD showed good relationship with the unwashed gum level of the gasoline. In general, smaller dosages produce less CCD. This means that detergents which have good IVD and PFID effectiveness at smaller dosage are better with regard to CCD. We analyzed the CCD by C13-NMR, GPC and IR method. The detergent contributes to CCD. Vehicle emissions tests were carried out to evaluate the effects of CCD on exhaust emissions.
Technical Paper

Effect of Gasoline Engine Oil Components on Intake Valve Deposit

1993-10-01
932792
This paper describes lubricant technology which helps to prevent intake valve deposit (IVD) formation for use with conventional gasolines without detergents, as well as the IVD evaluation method used in testing. The FED 3462 method was modified to establish a new panel coking test method, with excellent correlation with the engine stand IVD test, for the quantitative evaluation of IVD. Tests have shown that IVD increases when the volatility of base oils becomes higher due to condensation and polymerization of engine oil additives. Furthermore, viscosity index improvers, metallic detergents and ashless dispersants have considerable effect on IVD formation. Based on various experiments, the authors have established a formulation technology for engine oils to lower IVD, which they incorporated in two newly formulated SG oils with lower IVD than conventional 5W-30 SG oil.
Technical Paper

Effect of Gasoline Components on Exhaust Hydrocarbon Components

1993-10-01
932670
Vehicle emissions tests were conducted using a 1992 model year Toyota Camry for California under the 1975 Federal Test Procedure. Nine fuels of different composition were prepared. Effects of gasoline composition and sulfur content on tailpipe and engine-out emissions were investigated. Exhaust mass emission test results indicated that gasoline distillation properties and sulfur content have large effect on non-methane organic gas emissions. Furthermore, fuel, engine-out, and tailpipe hydrocarbons were speciated and the relationship between fuel and exhaust specific ozone reactivity analyzed. From these studies, it is concluded that aromatics are the largest contributor to the specific ozone reactivity of exhaust emissions and these aromatics, in emissions, are mainly unburned and partly oxidized aromatics from the fuel. Fuel MTBE correlates with exhaust olefins and oxygenates.
Technical Paper

Mechanism of Intake Valve Deposit Formation Part III: Effects of Gasoline Quality

1992-10-01
922265
Quality control of gasoline constituents and its effect on the Intake Valve Deposits (IVD) has become a recent issue. In this paper, the effects of gasoline and oil quality on intake valve deposits were investigated using an Intake Valve Deposit Test Bench and a Sludge Simulator. The deposit formation from the gasoline maximized at an intake valve temperature of approximately 160 °C, and the deposits formed from the engine oil were maximum at approximately 250 °C. Therefore, the contribution of the gasoline or the engine oil appears to depend on the engine conditions. The gasoline which contains MTBE or ethanol with no detergent additive slightly increases the deposition amount. The gasoline with a superior detergent significantly decreases the deposition amount even when MTBE or ethanol is blended in the gasoline. Appropriate detergent fuel additive retards the oil deterioration.
Technical Paper

Effects of California Phase 2 Reformulated Gasoline Specifications on Exhaust Emission Reduction

1992-10-01
922179
In response to various reformulated gasoline regulations, several studies have been conducted to evaluate the relationship between fuel properties and vehicle exhaust emissions. These studies, however, have focused on the fuel effect and have not examined the most promising advanced technology emission control systems on low emission vehicles. Toyota's reformulated gasoline research first set out to study the effect fuel compositions has on 2 different emission control systems. On both systems, non-methane hydrocarbon (NMHC) emissions were significantly affected by the 50% and 90% distillation temperature (T50 and T90). A correlation was also found exhaust olefine content and the amount of MTBE contained in the fuel. Research was also conducted on the specific ozone reactivity (SOR) of exhaust hydrocarbons. Various fuels with similar specifications but blended from different feedstocks were evaluated.
Technical Paper

Analysis of Poor Engine Response Caused by MTBE-Blended Gasoline from the Standpoint of Fuel Evaporation

1992-02-01
920800
Fifty percent distillation temperature (T50) can be used as a warm-up driveability indicator for a hydrocarbon-type gasoline. MTBE-blended gasoline, however, provides poorer driveability than a hydrocarbon-type gasoline with the same T50. The purposes of this paper are to examine the reason for poor engine driveability caused by MTBE-blended gasolines, and to propose a new driveability indicator for gasolines including MTBE-blended gasolines. The static and dynamic evaporation characteristics of MTBE-blended gasolines such as the evaporation rate and the behavior of each component during evaporation were analyzed mainly by using Gas Chromatography/Mass Spectrometry. The results of the analysis show that the MTBE concentration in the vapor, evaporated at ambient temperature (e.g. 24°C), is higher than that in the original gasoline. Accordingly, the fuel vapor with enriched MTBE flows into the combustion chamber of an engine just after the throttle valve is opened.
X