Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Investigation on Ignition of a Single Lubricating Oil Droplet in Premixed Combustible Mixture at Engine-Relevant Conditions

2019-04-02
2019-01-0298
The ignition of lubricating oil droplet has been proved to be the main factor for pre-ignition and the following super-knock in turbocharged gasoline direct injection engine. In this paper, the ignition process of lubricating oil droplet in combustible ambient gaseous mixture was investigated in a rapid compression machine (RCM). The pre-ignition induction by oil droplet of the ambient gaseous mixture was analyzed under different initial droplet volume and effective temperature conditions. The oil droplet was suspended on a tungsten fiber in the combustion chamber and the ignition process was recorded by a high-speed camera through the quartz window mounted at the end of the combustion chamber. The pressure traces were also obtained by a sensor in order to get the ignition delay and analyze the combustion process in detail.
Technical Paper

Investigation of effect of flame propagation and thermal conditions on the ultra-lean mixture ignition through a rapid compression machine

2019-04-02
2019-01-0963
Compression ratio and specific heat ratio are two dominant factors influencing engine thermal efficiency. Therefore, ultra-lean burn may be one method to deal with increasingly stringent fuel consumption and emission regulations in the approaching future. To pursue high efficiency and clean combustion, innovative combustion modes have been applied on research engines including homogeneous charge compression ignition (HCCI), spark-assisted compression ignition (SACI), and gasoline direct-injection compression ignition (GDCI), etc. Compared to HCCI, SACI can extend the load range and more easily control combustion phase while it is constrained by the limit of flame propagation. For SACI with ultra-lean burn in engines, equivalence ratio no more than 0.6, rich-fuel pockets around spark plug and supercharging are essential for flame stability and dynamic performance requirement.
Technical Paper

Comparative Study of Steel-Aluminum Mechanical Joints: Self-Piercing Riveting and Clinching

2019-04-02
2019-01-1115
Nowadays manufacturing lightweight vehicles not only pursues more excellent structural performance of materials, but also puts effort on selecting or developing reliable technologies for joining dissimilar materials to offer sufficient structural stiffness and crashworthiness. Among the combinations of dissimilar materials, steels and aluminum alloys are the most prevalent that are applied to achieve viable and sustainable products. Joining processes of mechanical, chemical, thermal or a hybrid type can be selected to join steel and aluminum alloy together, which could become complicated considering the manufacturing conditions, the cost and so on. Self-piercing riveting (SPR) and clinching have many advantages, and are quite suitable for manufacturing steel-aluminum joints. SPR has good mechanical and fatigue strength while clinching has a lower manufacturing cost.
Technical Paper

Modelling and Simulation of a Magnetorheological Fluid Damper with Multi-Accumulator during Mode Shifting

2019-04-02
2019-01-0856
In continuous controllable damper, there usually exists a compensation chamber with designated initial gas pressure to provide volume compensation while the damper piston is moving up and down. This compensation chamber works as a gas spring to some degree to provide force to the damper rod. In this work, in order to extend the force range of the continuous controllable damper (CCD) and improve the controlling rate, a novel structure of CCD with three additional compensation chambers is proposed. These additional compensation chambers are charged with high, middle and low pressure respectively, with which the damping force range can be rapidly increased or decreased to higher and lower levels through mode shifting. A dynamic model of this novel CCD with coupled effects between the gas and liquid in the damper is developed, and the output force is simulated parametrically in different conditions.
Technical Paper

The Differential Braking Steering Control of Special Purpose Flat-Bed Electric Vehicle

2019-04-02
2019-01-0440
Special purpose flat-bed vehicle is commonly utilized to move heavily items such as containers in warehouse, port and other freight handling scene, the hydraulic steering system have be gradually replaced by electric ones. However, the cost of electric steering system is high for commercial activities. Thus, for some corporates, the differential braking steering strategy becomes an ideal alternative. The purpose of this paper is to present a steering control method for flat-bed electric vehicle based on differential braking system. There are two main components of the control method, steering while moving forward and pivot steering, and each of them was composed by upper layer and executive layer. To evaluate the practicability of the control methods, a 7-DOF flat-bed vehicle model was established in Simulink.
Technical Paper

Active Steering and Anti-Roll Shared Control for Enhancing Roll Stability in Path Following of Autonomous Heavy Vehicle

2019-04-02
2019-01-0454
Rollover accident of heavy vehicle during cornering is a serious road safety problem worldwide. In the past decade, based on the active intervention into the heavy vehicle roll dynamics method, researches have proposed effective anti-roll control schemes to guarantee roll stability during cornering. Among those studies, however, roll stability control strategies are generally derived independent of front steering control inputs, the interactive control characteristic between steering and anti-roll system have not been thoroughly investigated. In this paper, a novel roll stability control structure that considers the interaction between steering and anti-roll system, is presented and discussed.
Technical Paper

Effects of Perforation Shapes on Water Transport in PEMFC Gas Diffusion Layers

2019-04-02
2019-01-0380
Water management, particularly in the gas diffusion layers (GDL), plays an important role in the performance and reliability of the proton exchange membrane fuel cells (PEMFCs). In this study, a two-phase multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is employed to simulate water transport in a reconstructed GDL and the effect of perforation shapes is investigated. The revised pseudopotential multiphase model is adopted to realize high-density ratio, good thermodynamic consistency, adjustable surface tension and high contact angle. The transport characteristics are analyzed in both vertical and horizontal transport directions. The LBM simulation provides detailed results in mesoscale and indicates that the surface tension dominates the process of water transport in the perforated GDL, which exhibits unexpectedly similarities in the vertical and horizontal transport.
Technical Paper

A Trajectory-Based Method for Scenario Analysis and Test Effort Reduction for Highly Automated Vehicle

2019-04-02
2019-01-0139
Unlike the test of passive safety of traditional vehicles, highly automated vehicles (HAV) need more capabilities to be tested. Besides, there are more parameter combinations for the scenarios that need to be tested for each capability, resulting in a high time-consuming and costs for the autonomous vehicle tests. This paper proposes a method for scenario analysis and test effort reduction. Firstly, the trajectories of the vehicle under test (VUT) in the scenario are analyzed, and the trajectories which lead to the test mission failure are obtained. Based on the above trajectories, the threshold that lead to the test mission failure, or a combination of thresholds are analyzed. The above thresholds or a combination of thresholds values are defined as Scenario Character Parameter (SCP). The process of the analysis of the SCPs are related to the abilities of the HAV, but does not depend on the specific algorithm of the HAV.
Technical Paper

A Novel Three Steps Composited Parameter Matching Method of an Electromagnetic Regenerative Suspension System

2019-04-02
2019-01-0173
The electromagnetic regenerative suspension has attracted much attention recently due to its potential to improve ride comfort and handling stability, at the same time recover kinetic energy which is typically dissipated in traditional shock absorbers. The key components of a ball-screw regenerative suspension system are a motor, a ball screw and a nut. For this kind of regenerative suspension, its damping character is determined by the motor's torque-speed capacity, which is different from the damping character of the traditional shock absorber. Therefore, it is necessary to establish a systematic approach for the parameter matching of ball-screw regenerative suspension, so that the damping character provided by it can ensure ride comfort and handling stability. In this paper, a 2-DOF quarter vehicle simulation model with regenerative suspension is constructed. The effects of the inertia force on ride comfort and handling stability are analyzed.
Technical Paper

Simulation Research on Engine Speed Fluctuation Suppression Based on Engine Torque Observer by Using a Flywheel ISG

2019-04-02
2019-01-0787
This paper conducts simulation research on engine torque ripple suppression based on the engine torque observer by using a flywheel-ISG (integrated starter generator). Usually, engine torque can be suppressed by using a passive method such as by installing a flywheel or torsional damper. However, failure problems arise in hybrid system because of different mechanical characters of the engine and its co-axial ISG motor. On the prototype test bench, the flywheel of the engine has been removed and replaced by an ISG rotor, namely FISG (flywheel ISG). Besides, the crank and FISG rotor are directly connected, which means no dampers or clutches are installed. If the engine torque ripples can be suppressed by the same level as the flywheel and damper by FISG active torque compensation, the new system can be more compact and economical. Simulation efforts are made to verify its feasibility. Firstly, based on the experimental test bench, which is currently under construction.
Technical Paper

The Review of Present and Future Energy Structure in China

2019-04-02
2019-01-0612
Both the economy and energy demand increase rapidly in China. The government is facing severe problems from energy security, carbon emissions and environmental issues. The past trends and future plans of energy will have great influence on the transportation, construction and industry development. This paper summarizes the present and future energy structure in China. Conventional fossil energy, nuclear energy and renewable energy are all included. Electricity will account for more proportion in total energy consumption in the future, and the structure of electricity will be cleaner. That will promote the development of electric vehicles and the transformation of China’s automotive industry. The optimization of energy structure will accelerate the low-carbon development in China. China’s energy development will enter a new stage from the expansion of total quantity to the upgrading of quality and efficiency.
Technical Paper

Attitude Control of the Vehicle with Six In-Wheel Drive and Adaptive Hydro Pneumatic Suspensions

2019-04-02
2019-01-0456
The ability of actively adjusting attitude provides a great advantage for those vehicles used in special environments such as off-road environment with extreme terrains and obstacles. It can improve vehicles’ stability and performance. This paper proposes an attitude control system for realizing the active attitude adjustment and vehicle motion control in the same time. The study is based on a vehicle with six wheel independent drive and six independent suspensions (6WIDIS), which is a kind of unmanned vehicle with six in-wheel drives and six independent hydro pneumatic suspensions. With the hydro- pneumatic suspensions, the vehicle’s attitude can be actively adjusted. This paper develops a centralized- distributed control strategy with attitude information obtained by multi-sensor fusion, which can coordinate the complex relationship among the six wheels and suspensions. The attitude control system consists of three parts.
Technical Paper

Development and Control of Four-Wheel Independent Driving and Modular Steering Electric Vehicles for Improved Maneuverability Limits

2019-04-02
2019-01-0459
Electric vehicles are capable of more flexible drivetrain configurations, such that driving dynamics of each wheel could be controlled independently to increase its stability and maneuverability bounds. We hereby propose a configuration consisting of four wheel independent driving and front and rear axle modular steering. The vehicle implements drive-by-wire technology, which means the control program running on vehicle control computer will have direct control authority of the vehicle under normal driving conditions, based on inputs of higher level systems such as human drivers and autonomous driving programs. Both the torque allocation on four wheels and the steering allocation on axles are completely independent on the mechanical hardware level, thus the vehicle is able to harness adverse contact conditions with confidence.
Technical Paper

Costs, Benefits and Range: Application of Lightweight Technology in Electric Vehicles

2019-04-02
2019-01-0724
The lightweight technology takes an important role in electric vehicle(EV) energy conservation domain, as lighter vehicle means less energy consumed under same condition. In this paper, the typical energy requirement in an NEDC cycle is investigated, and the relationship between lightweight rate and energy consumption reduction effectiveness is given. The benefit of lightweight to EV come from the less battery cost because of less energy requirement. For EVs, with less battery cost, a certain lightweight rate can be obtained with less total cost. On the other hand, if lightweight rate is very high, the battery cost won't be able to cover the lightweight cost. Besides, the relationship between driving range and battery capacity is discussed in this paper. It is found that there is a limitation of EV driving range, which is determined by the battery energy density.
Technical Paper

A Topological Map-based Path Coordination Strategy for Autonomous Parking

2019-04-02
2019-01-0691
This paper proposed a path coordination strategy for autonomous parking based on independently designed parking lot topological map. The strategy merges two types of paths at the three stages of path planning, to determinate mode switching timing between low-speed automated driving and automated parking. Firstly, based on the principle that parking spaces should be parallel or vertical to a corresponding path, a topological parking lot map is designed by using the point cloud data collected by LiDAR sensor. This map is consist of road node coordinates, adjacent matrix and parking space information. Secondly, the direction and lateral distance of the parking space to the last node of global path are used to decide parking type and direction at parking planning stage. Finally, the parking space node is used to connect global path and parking path at path coordination stage.
Technical Paper

Full Protection Scheme and Energy Optimization Management of the Battery in Internal Combustion Engine Vehicles Based on Power Partitioning Model

2019-04-02
2019-01-1205
As the only energy storage component in the internal combustion engine vehicles (ICEVs), the battery is lack of comprehensive supervision and effective protection. Excessive discharge or aging cannot be detected and dealt with, which may lead to damage of the battery, even startup failure of the vehicle. In this paper, a full protection and optimization management scheme of the battery is proposed, to achieve comprehensive protection of the battery and energy optimization. Firstly, power partitioning model of the battery is established to reveal the battery characteristics in different states, which divides the battery into several function zones. Then, based on the power partitioning model, over discharge protection and graded overcurrent protection method are proposed, to achieve full protection of the battery. Thirdly, energy optimization management strategy based on generator’s multimode operation is introduced.
Technical Paper

Effect of Single and Double-Deck Pre-Chamber Designs to the Combustion Characteristics of Premixed CH4 /Air

2018-09-10
2018-01-1688
An experiment was carried out to investigate the effect of single and double-deck pre-chamber on the combustion characteristics of premixed CH4/air in a constant volume vessel using schlieren method. A special design was proposed for the visualization of the pre-chamber. Combustion with different initial temperatures (300 K, 400 K, 500 K) were observed at stoichiometric ratio to lean-burn limit. Although single-deck pre-chamber has advantages over double-deck pre-chamber in both initial flame development duration and main combustion duration, the latter could extend the lean-burn limit by up to 0.3 and promote the stability of ignition. It is also found that extensive distribution of active species in main chamber before ignition can accelerate speed of flame propagation enormously.
Technical Paper

Study of Turbulent Entrainment Quasi-Dimensional Combustion Model for HCNG Engines with Variable Ignition Timings

2018-09-10
2018-01-1687
Presently, urban transportation highly depends on the fossil fuels, but its rapid fluctuating economic issues and environmental consequences impose the variegation of energy sources. Hydrogen enriched compressed natural gas (HCNG) engines offer the potential of higher brake thermal efficiency with low emissions, which also satisfies the strict pollutant emission standards. The two-zone turbulent entrainment quasi-dimensional combustion model is developed to predict the combustion process of spark-ignited hydrogen enriched compressed natural gas-fueled engines. The fundamentals of thermodynamic process, turbulent flame propagation model and other sub-models like laminar burning velocity, adiabatic temperature and ignition lag model are introduced for the better accuracy. The experiments have been conducted for three different fuels; pure CNG, 20% HCNG, and 40% HCNG blends under MAP of 105 kPa for various excess air ratios (λ) and ignition timing (θi).
Technical Paper

Fuel Economy Regulations and Technology Roadmaps of China and the US: Comparison and Outlook

2018-09-10
2018-01-1826
In order to address the increasing energy and environmental concerns, China and the US both launched the fuel economy regulations and aim to push the development of technology. In this study, the stringency of CAFC and CAFE regulations and the technology development of two countries are compared. Besides, the optimal technology pathways of America and automakers for the compliance of CAFE regulations are calculated based on the modified VOLPE model, and the results are used as reference for China. The results indicate that the annual regulation improvement rates of China is higher than America and the AIR of China 2015-2020 regulation reaches 6.2% and is the most stringent phase in 10 years from 2015 to 2025. From the perspective of technology, there are still big gaps between China and the US in the applications of advanced fuel saving technologies.
Technical Paper

Numerical Analysis on the Potential of Reducing DPF Size Using Low Ash Lubricant Oil

2018-09-10
2018-01-1760
Diesel particulate filter (DPF) is necessary for diesel engines to meet the increasingly stringent emission regulations. Many studies have demonstrated that the lubricant derived ash has a significant effect on DPF pressure drop and engine fuel economy, and this effect becomes more and more severe with the increasing of operating hours of the DPF because the ash accumulated in the DPF cannot be removed by regeneration. It is reported that most of the DPFs operated with more ash than soot in the filter for more than three quarters of the time during its lifetime [1]. In order to mitigate this problem, the original engine manufacturers (OEM) tend to use an oversized DPF for the engine. However, it will increase the costs of the DPF and reduce the compactness of the engine aftertreatment system.
X