Refine Your Search

Topic

Search Results

Technical Paper

Application of Machine Learning to Engine Air System Failure Prediction

2024-04-09
2024-01-2007
With the capability of avoiding failure in advance, failure prediction model is important not only to end users, but also to the service engineers in vehicle industry. This paper proposes an approach based on anomaly detection algorithms and telematic data to predict the failure of the engine air system with Turbo charger. Firstly, the relationship between air system and all obtained features are analyzed by both physical mechanism and data-wise. Then, the features including altitude, air temperature, engine output power, and charger pressure are selected as the input of the model, with the sampling interval of 1 minute. Based on the selected features, the healthy state for each vehicle is defined by the model as benchmark. Finally, the ‘Medium surface’ is determined for specific vehicle, which is a hyperplane with the medium points of the healthy state located at, to detect the minor weakness symptom (sub-health state).
Technical Paper

Deformation Analysis on In-Plane Loading of Prismatic Cell

2024-04-09
2024-01-2060
The collision accidents of electric vehicles are gradually increasing, and the response of battery cell under mechanical abuse conditions has attracted more and more attention. In the real collision, the mechanical load on battery generally has the following characteristics, including multiple loading directions, dynamic impact and blunt intrusion. Therefore, it is necessary to study the mechanical response and deformation of battery under complex loading, especially in-plane dynamic loading condition. According to the actual accident, we designed the constrained blunt compression test of the battery in different speeds and directions. For out-of-plane loading, the structural stiffness of battery increases obviously and the fracture is advanced compared with the corresponding quasi-static tests. For in-plane constrained loading, the force response can be approximately divided into two linear segments, in which the structural stiffness increases abruptly after the inflection point.
Technical Paper

Integrated Decision-Making and Planning Method for Autonomous Vehicles Based on an Improved Driving Risk Field

2023-12-31
2023-01-7112
The driving risk field model offers a feasible approach for assessing driving risks and planning safe trajectory in complex traffic scenarios. However, the conventional risk field fails to account for the vehicle size and acceleration, results in the same trajectories are generated when facing different vehicle types and unable to make safe decisions in emergency situations. Therefore, this paper firstly introduces the acceleration and vehicle size of surrounding vehicles for improving the driving risk model. Then, an integrated decision-making and planning model is proposed based on the combination of the novelty risk field and model predictive control (MPC), in which driving risk and vehicle dynamics constraints are taken into consideration. Finally, the multiple driving scenarios are designed and analyzed for validate the proposed model.
Technical Paper

Identification of Driver’s Braking Intention in Cut-In Scenarios

2023-04-11
2023-01-0852
Accurate identification of driver’s braking intention is essential in advanced driver assistance system and can make the driving process more comfortable and trustworthy. In this paper, a novel method for driver braking intention identification in cut-in scenarios was proposed by using driver’s gaze information and motion information of cut-in vehicles. Firstly, a "looking in and looking out" experimental platform including three eye-tracking cameras and one front-view camera was built to collect driver's gaze information and the vehicle motion information. Secondly, driver’s gaze features and motion features of cut-in vehicles were selected and the braking intention identification performance of several decision tree-based ensemble learning algorithms was compared. Thirdly, the feature importance was analyzed by using SHAP (SHapley Additive exPlanations) values. This novel method of braking intention identification makes full use of in-vehicle camera sensors.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Technical Paper

Development of Detailed Model and Simplified Model of Lithium-Ion Battery Module under Mechanical Abuse

2022-12-16
2022-01-7120
In order to obtain a good understanding of mechanical behaviors of lithium-ion battery modules in electric vehicles, comprehensive experimental and numerical investigations were performed in the study. Mechanical indentation tests with different indentation heads, different loading directions and different impact speeds were performed on battery modules with prismatic cells. To mitigate thermal runaway, only fully discharged battery modules were used. The force-displacement responses and open circuit voltage were recorded and compared. It was found that the battery modules experienced different failure modes when subjected to mechanical abuse. Besides internal short circuit of cells, external short circuit from bus bar and vapor leakage of electrolyte were also found to deteriorate the mechanical and electrical integrity of the tested modules. Mechanical anisotropy and dynamic effect were found on the battery module.
Technical Paper

In-situ Mechanical Characterization of Compression Response of Anode Coating Materials through Inverse Approach

2022-12-16
2022-01-7121
In this decade, the detailed multi-layer FE model is always applied for investigating the mechanical behavior of Li-ion batteries under mechanical abuse. However, establishing a detailed model of different types of batteries requires a series of material characterization of components. To improve the efficiency of the procedure of component calibration, we introduce a procedure of automatic coating material characterization as an example to represent the strategy. The proposed method is constructing a response solver through MATLAB to predict the mechanical behavior of the coating specimen's representative volume element (RVE) under designated test conditions. The coating material is represented through Drucker-Prager-Cap (DPC) model. All parameters, including boundary conditions and material parameters, are included in this solver.
Technical Paper

High-Power Synchronous Rectification Drive Power System Based on PID Control

2022-03-29
2022-01-0720
The driving power system can be combined with lasers, lights, etc., and applied to automobiles to achieve various functions. Under the general trend of the development of intelligent vehicles, people have higher and higher requirements for the accuracy and power of various equipment. However, as power increases, how to ensure the stability of factors such as current is a challenging problem. Therefore, it is extremely important to study and design a high-power drive system in this paper, so as to ensure a stable output of the current. The system is composed of power supply, load, secondary power supply and control chip. The choice of power supply and load is conventional model. The secondary power supply adopts step-down circuit, with synchronous rectifier chip, which can effectively reduce energy consumption, and with temperature protection device, which can ensure the safe and reliable operation of equipment.
Technical Paper

Detection of Driver’s Cognitive States Based on LightGBM with Multi-Source Fused Data

2022-03-29
2022-01-0066
According to the statistics of National Highway Traffic Safety Administration, driver’s cognitive distraction, which is usually caused by drivers using mobile phones, has become one of the main causes of traffic accidents. To solve this problem and guarantee the safety of man-vehicle-road system, the most critical work is to improve the accuracy of driver’s cognitive state detection. In this paper, a novel driver’s cognitive state detecting method based on LightGBM (Light Gradient Boosting Machine) is proposed. Firstly, cognitive distraction experiments of making calls are carried out on a driving simulator to collect vehicle states, eye tracking and EEG (electron encephalogram) data simultaneously and feature extraction is conducted. Then a classifier considering road and individual characteristics used for detecting cognitive states is trained based on LightGBM algorithm, with 3 predefined cognitive states including concentration, ordinary distraction and extreme distraction.
Technical Paper

Smart Cockpit Development Trend and Smartphone-Head Unit Relationship

2022-01-31
2022-01-7004
Smart vehicles have become an important development direction of the transformation and upgrading of the automotive industry. Highly intelligent smart vehicles can free human drivers from driving tasks, endowing cars with the mobility and instrument properties. Smart cockpits integrate the media for interactions between humans and environments inside and outside cars. This paper has explored the components of smart cockpits, sorted out three development stages of smart cockpits from such three dimensions as man, car and environment, analyzed the characteristics of the second development stage (Stage 2.0), and illustrated the necessity of the competition between smartphones and head units at the second stage. Based on the comparison of merits and demerits between smartphones and head units, this paper has proposed three principles for an ideal division of duties of smartphones and head units.
Technical Paper

Mechanical Anisotropy and Strain-Rate Dependency of a Large Format Lithium-Ion Battery Cell: Experiments and Simulations

2021-04-06
2021-01-0755
In order to get a better understanding of the mechanical behavior of lithium-ion battery cells, especially for the mechanical anisotropy and dynamic effect, a series of tests for quasi-static indentation and dynamic impact tests has been designed. In the study, mechanical indentation tests with different indentation heads, different loading directions and different impact speeds were performed on a type of large format prismatic lithium-ion battery cells and jellyrolls of them. To mitigate thermal runaway, only fully-discharged cells and jellyrolls were used. The force-displacement response and open circuit voltage (OCV) were recorded and compared. It shows that jellyroll and battery cell have apparent mechanical anisotropy and strain-rate effect. The stiffness of jellyroll and cell in out-of-plane direction is much larger than that in two in-plane directions.
Technical Paper

An Improved Probabilistic Threat Assessment Method for Intelligent Vehicles in Critical Rear-End Situations

2020-04-14
2020-01-0698
Threat assessment (TA) method is vital in the decision-making process of intelligent vehicles (IVs), especially for ADAS systems. In the research of TA, the probabilistic threat assessment (PTA) method is acting an increasing role, which can reduce the uncertainties of driver’s maneuvers. However, the driver behavior model (DBM) used in present PTA methods was mainly constructed by limited data or simple functions, which is not entirely reasonable and may affect the performance of the TA process. This work aims to utilize crash data extracted from Event Data Recorder (EDR) to establish more accurate DBM and improve the current PTA method in rear-end situations. EDR data with responsive maneuvers were firstly collected, which were then employed to construct the initial DBM (I-DBM) model by using the multivariate Gaussian distribution (MGD) framework. Besides, the model was further subdivided into six parts by two important risk indicators, Time-to-collision (TTC) and velocity.
Technical Paper

An Experiment and Simulation Study on Failure of High Voltage Cables under Indentation

2020-04-14
2020-01-0199
Failure of high voltage cables (HVCs) which sometimes occurs in electric vehicle collision is one of the fuses that leads to severe thermal runaway of the traction battery system, which has not gotten thorough investigations. This paper presents an experiment and simulation study on the failure behaviors of HVCs under indentation loadings. Tests were performed with different combinations of indenter (cylinder indenter with a diameter of 5 mm which was labeled as D5, cylinder indenter with a diameter of 15 mm which was labeled as D15 and wedge indenter with an angle of 60° which was labeled as V60) and loading speed (1.5 mm/min for quasi-static and 2m/s for dynamic). Experimental results indicated that the failure behavior of HVCs was both influenced by the indenter shape and loading speeds. Sharp indenter will led to a component failure sequence from outmost to innermost.
Technical Paper

Fault-Tolerant Control of Regenerative Braking System on In-Wheel Motors Driven Electric Vehicles

2020-04-14
2020-01-0994
A novel fault tolerant brake strategy for In-wheel motor driven electric vehicles based on integral sliding mode control and optimal online allocation is proposed in this paper. The braking force distribution and redistribution, which is achieved in online control allocation segment, aim at maximizing energy efficiency of the vehicle and isolating faulty actuators simultaneously. The In-wheel motor can generate both driving torque and braking torque according to different vehicle dynamic demands. In braking procedure, In-wheel motors generate electric braking torque to achieve energy regeneration. The strategy is designed to make sure that the stability of vehicle can be guaranteed which means vehicle can follow desired trajectory even if one of the driven motor has functional failure.
Technical Paper

Safety Development Trend of the Intelligent and Connected Vehicle

2020-04-14
2020-01-0085
Automotive safety is always the focus of consumers, the selling point of products, the focus of technology. In order to achieve automatic driving, interconnection with the outside world, human-automatic system interaction, the security connotation of intelligent and connected vehicles (ICV) changes: information security is the basis of its security. Functional safety ensures that the system is operating properly. Behavioral safety guarantees a secure interaction between people and vehicles. Passive security should not be weakened, but should be strengthened based on new constraints. In terms of information safety, the threshold for attacking cloud, pipe, and vehicle information should be raised to ensure that ICV system does not fail due to malicious attacks. The cloud is divided into three cloud platforms according to functions: ICVs private cloud, TSP cloud, public cloud.
Technical Paper

Multi-Objective Optimization Design of Hybrid Material Bumper for Pedestrian Protection and Crashworthiness Design

2020-04-14
2020-01-0201
In vehicle accident, the bumper beam generally requires high stiffness for sufficient survival space for occupants while it may cause serious pedestrian lower extremity injuries. The aim of this study is to promote an aluminum-steel hybrid material double-hat bumper to meet the comprehensive requirements. The hybrid bumper is designed to improve the frontal crash and pedestrian protection performances in collision accidents. Finite element (FE) models of the hybrid bumper was built, validated, and integrated into an automotive model. The Fixed Deformable Barrier (FDB) and Transport Research Laboratory (TRL) legform model were used to obtain the vehicle crashworthiness and pedestrian lower leg injury indicators. Numerical results showed that the hybrid bumper had a great potential for crashworthiness performance and pedestrian protection characteristics. Based on this, a multi-objective optimization design (MOD) was performed to search the optimal geometric parameters.
Technical Paper

Development and Control of Four-Wheel Independent Driving and Modular Steering Electric Vehicles for Improved Maneuverability Limits

2019-04-02
2019-01-0459
Electric vehicles are capable of more flexible drivetrain configurations, such that driving dynamics of each wheel could be controlled independently to increase its stability and maneuverability bounds. We hereby propose a configuration consisting of four wheel independent driving and front and rear axle modular steering. The vehicle implements drive-by-wire technology, which means the control program running on vehicle control computer will have direct control authority of the vehicle under normal driving conditions, based on inputs of higher level systems such as human drivers and autonomous driving programs. Both the torque allocation on four wheels and the steering allocation on axles are completely independent on the mechanical hardware level, thus the vehicle is able to harness adverse contact conditions with confidence.
Journal Article

Experimental Investigation of the Mechanical Behavior of Aluminum Adhesive Joints under Mixed-Mode Loading Conditions

2018-04-03
2018-01-0105
In recent years, structural adhesives have rapidly become the preferred alternative to resistance spot welding in fabricating stronger, lighter aluminum connections. Connections inevitably undergo and must withstand complex quasi-static and/or dynamic loads during their service life. Therefore, understanding how loading conditions affect the mechanical behavior of adhesive joints is vital to their design and the advancement of structural safety. Quasi-static and dynamic tests are performed to analyze both the strength and failure modes of aluminum 6062 substrates bonded by an adhesive (Darbond EP-1506) for an array of loading directions. An Arcan test device, which enables application of mixed-mode loads ranging from pure peel (mode I) to pure shear (mode II) to the adhesive layer, is employed in quasi-static testing. A self-designed medium-speed test machine is utilized to perform dynamic testing.
Technical Paper

Emergency Steering Evasion Control by Combining the Yaw Moment with Steering Assistance

2018-04-03
2018-01-0818
The coordinated control of stability and steering systems in collision avoidance steering evasion has been widely studied in vehicle active safety area, but the studies are mainly aimed at autonomous vehicle without driver or conventional combustion engine vehicle. This paper focuses on the control of hybrid vehicle integrated with rear hub in emergency steering evasion situation, and considering the driver’s characteristics. First, the mathematics model of vehicle dynamics and driver has been given. Second, based on the planned steering evasion path, the model predictive control method is presented for achieving higher evasion path tracking accuracy under driver’s steering input. The prediction model includes an adaptive preview distance driver model and a vehicle dynamics model to predict the driver input and the vehicle trajectory.
Technical Paper

An SVM-Based Method Combining AEB and Airbag Systems to Reduce Injury of Unbelted Occupants

2018-04-03
2018-01-1171
An autonomous emergency braking (AEB) system can detect emergency conditions using sensors (e.g., radar and camera) to automatically activate the braking actuator without driver input. However, during the hard braking phase, crash conditions for the restraint system can easily change (e.g., vehicle velocity and occupant position), causing an out-of-position (OOP) phenomenon, especially for unbelted occupants entering the airbag deployment range, which may lead to more severe injuries than in a normal position. A critical step in reducing the injury of unbelted occupants would be to design an AEB system while considering the effect of deployed airbags on the occupants. Thus far, few studies have paid attention to the compatibility between AEB and airbag systems for unbelted occupants. This study aims to provide a method that combines AEB and airbag systems to explore the potential injury reduction capabilities for unbelted occupants.
X