Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

Coatings for Improving Engine Performance

1997-02-24
970204
Thermal barrier coatings are becoming increasingly important in providing thermal insulation for heat engine components. Thermal insulation reduces in-cylinder heat transfer from the engine combustion chamber as well as reducing component structural temperatures. Containment of heat also contributes to increased in-cylinder work and offers higher exhaust temperatures for energy recovery. Lower component structural temperatures will result in greater durability. Advanced ceramic composite coatings also offer the unique properties that can provide reductions in friction and wear. Test results and analysis to evaluate the performance benefits of thin thermal barrier coated components in a single cylinder diesel engine are presented.
Technical Paper

Experimental Determination of the Instantaneous Frictional Torque in Multicylinder Engines

1996-10-01
962006
An experimental method for determining the Instantaneous Frictional Torque (IFT) using pressure transducers on every cylinder and speed measurements at both ends of the crankshaft is presented. The speed variation measured at one end of the crankshaft is distorted by torsional vibrations making it difficult to establish a simple and direct correlation between the acting torque and measured speed. Using a lumped mass model of the crankshaft and modal analysis techniques, the contributions of the different natural modes to the motion along the crankshaft axis are determined. Based on this model a method was devised to combine speed measurements made at both ends of the crankshaft in such a way as to eliminate the influence of torsional vibrations and obtain the equivalent rigid body motion of the crankshaft. This motion, the loading torque and the gas pressure torque are utilized to determine the IFT.
Technical Paper

Design of High Temperature Engine Components

1995-02-01
950982
The successful design of engine components for high temperature applications is very dependent on the use of advanced finite element methods. Without the use of thermal and structural modeling techniques it is virtually impossible to establish the reliable design specifications to meet the application requirements. Advanced modeling and design of two key engine components, the cylinder head thermal insulating headface plate and the capped air gap insulated piston, are presented. Prior engine test experience contributes to further understanding of the important factors in recognizing successful design solutions. It has been found that the modeling results are only as good as the modeling assumptions and that all modeling boundary conditions and constraints must be reviewed carefully.
X