Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

US National Laboratory R&D Programs in Support of Electric and Hybrid Electric Vehicle Batteries

The successful commercialization of Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) can provide significant benefits by reducing the United States' growing dependence on petroleum fuels for transportation; decreasing polluting and greenhouse gas emissions; and facilitating a long-term transition to sustainable renewable energy sources. Recognizing these benefits, the U.S. Department of Energy (DOE) supports an active program of long-range R&D to develop electric vehicle (EV) and hybrid electric vehicle (HEV) technologies and to accelerate their commercialization. The DOE Office of Advanced Automotive Technologies (OAAT) supports several innovative R&D programs, conducted in partnership with DOE's national laboratories, industry, other government agencies, universities, and small businesses. The Office has two key R&D cooperative agreements with the U.S. Advanced Battery Consortium (USABC) to develop high-energy batteries for EVs and high-power batteries for HEVs.
Technical Paper

Electric and Hybrid Vehicle Testing

Today's advanced-technology vehicles (ATVs) feature hybrid-electric engines, regenerative braking, advanced electric drive motors and batteries, and eventually fuel cell engines. There is considerable environmental and regulatory pressure on fleets to adopt these vehicles, resulting in high-risk purchase decisions on vehicles that do not have documented performance histories. The Department of Energy's Field Operations Program tests ATVs and disseminates the results to provide accurate and unbiased information on vehicle performance ( Enhancing the fleet manager's knowledge base increases the likelihood that ATVs will be successfully and optimally placed into fleet missions. The ATVs are tested using one or more methods - Baseline Performance, Accelerated Reliability, and Fleet Testing. The Program and its 10 testing partners have tested over three-dozen electric and hybrid electric vehicle models, accumulating over 4 million miles of testing experience.
Technical Paper

Overview of Diesel Emission Control-Sulfur Effects Program

This paper describes the results of Phase 1 of the Diesel Emission Control - Sulfur Effects (DECSE) Program. The objective of the program is to determine the impact of fuel sulfur levels on emissions control systems that could be used to lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from vehicles with diesel engines. The DECSE program has now issued four interim reports for its first phase, with conclusions about the effect of diesel sulfur level on PM and total hydrocarbon (THC) emissions from the high-temperature lean-NOx catalyst, the increase of engine-out sulfate emissions with higher sulfur fuel levels, the effect of sulfur content on NOx adsorber conversion efficiencies, and the effect of fuel sulfur content on diesel oxidation catalysts, causing increased PM emissions above engine-out emissions under certain operating conditions.
Technical Paper

Government-Industry Partnerships and Environmental and Safety Solutions

The Advanced Battery Readiness Ad Hoc Working Group, a government- industry forum sponsored by the United States Department of Energy, is charged with assessing environmental and safety issues associated with advanced batteries for electric and hybrid electric vehicles. Electric and hybrid electric vehicles require sophisticated advanced battery storage systems. Frequently, toxic, reactive, and flammable substances are used in the energy storage systems. Often, the substances have safety, recycling, and shipping implications with respect to U.S. Environmental Protection Agency and Department of Transportation regulations. To facilitate commercialization, reg-ulations must either be modified or newly developed. Government-industry coordination has expedited needed regulatory changes, and promoted other partnerships to achieve environmental and safety solutions.
Technical Paper

Options for the Introduction of Methanol as a Transportation Fuel

It is generally recognized chat methanol is the best candidate for long-term replacement of petroleum-based fuels at soma time in the future. The transition from an established fuel to a new fuel, and vehicles that can use the new fuel, is difficult, however. This paper discusses two independent investigations of possible transition uses of methanol, which, when combined, may provide an option for introduction of methanol that takes advantage of the existing industrial base, and provides economic incentives to the consumer. The concept combines the intermediate blends of methanol and gasoline (50%-70% methanol) with the Flexible Fuel Vehicle. In addition to a possible maximum cost effectiveness, these fuels ease vehicle range restrictions due to refueling logistics, and mitigate cold starting problems, while at the same time providing most of the performance of the higher concentration blends.