Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Understanding of Intake Cam Phasing Effects on the Induction and Fuel-Air Mixing in a DISI Engine

2004-06-08
2004-01-1947
Variable Cam Timing (VCT) has been proven to be a very effective method in PFI (Port Fuel Injection) engines for improved fuel economy and combustion stability, and reduced emissions. In DISI (Direct Injection Spark Ignition) engines, VCT is applied in both stratified-charge and homogeneous charge operating modes. In stratified-charge mode, VCT is used to reduce NOx emission and improve combustion stability. In homogeneous charge mode, the function of VCT is similar to that in PFI engines. In DISI engine, however, the VCT also affects the available fuel-air mixing time. This paper focuses on VCT effects on the induction process and the fuel-air mixing homogeneity in a DISI engine. The detailed induction process with large exhaust-intake valve overlap has been investigated with CFD modeling. Seven characteristic sub-processes during the induction have been identified. The associated mechanism for each sub-process is also investigated.
Technical Paper

PIV In-Cylinder Flow Measurements of Swirl and the Effect of Combustion Chamber Design

2004-06-08
2004-01-1952
Particle Image Velocimetry (PIV) experiments were performed on single-cylinder versions of a 0.375 L/cylinder and a 0.5 L/cylinder engines from the same engine class to determine the differences in swirl flow between the two engines. Two engine speeds (750 and 1500 rpm), manifold pressures (75 kPa and 90 kPa) and valve timings (maximum overlap and with the intake valve 20° retarded from the max overlap position) were examined. The swirl ratio (SR) and mean velocity (|V|) were calculated at BDC for every case in the mid-stroke plane and the fluctuation velocity (U') calculated for the 1500 rpm / 90 kPa / maximum overlap case. The in-cylinder velocities do not differ by the expected ratio of mean piston speed caused by differences in the engine stroke. The smaller engine was expected to have lower in-cylinder velocities and SRs due to a shorter stroke and lower piston speeds but instead has SR and |V| levels that are the same or higher than the larger engine.
Technical Paper

Development of a New Light Stratified-Charge DISI Combustion System for a Family of Engines With Upfront CFD Coupling With Thermal and Optical Engine Experiments

2004-03-08
2004-01-0545
A new Light Stratified-Charge Direct Injection (LSC DI) spark ignition combustion system concept was developed at Ford. One of the new features of the LSC DI concept is to use a ‘light’ stratified-charge operation window ranging from the idle operation to low speed and low load. A dual independent variable cam timing (DiVCT) mechanism is used to increase the internal dilution for emissions control and to improve engine thermal efficiency. The LSC DI concept allows a large relaxation in the requirement for the lean after-treatment system, but still enables significant fuel economy gains over the PFI base design, delivering high technology value to the customer. In addition, the reduced stratified-charge window permits a simple, shallow piston bowl design that not only benefits engine wide-open throttle performance, but also reduces design compromises due to compression ratio, DiVCT range and piston bowl shape constraints.
Technical Paper

PIV Characterization of a 4-valve Engine with a Camshaft Profile Switching (CPS) system

2003-05-19
2003-01-1803
Particle Image Velocimetry (PIV) measurements were performed on a single cylinder optically accesible version of a 3.0L 4-valve engine using a Camshaft Profile Switching (CPS) system. The flow field was investigated at two engine speeds (750 and 1500 rpm), two manifold pressures (75 and 90 kPa) and two intake cam centerlines (maximum lift at 95° and 115° aTDCi respectively). Images were taken in the swirl plane at 10 mm and 40 mm below the deck with the piston at 300° aTDC of intake (60° bTDC compression) and BDC respectively. In the tumble plane, images were taken in a plane bisecting the intake valves with the piston at BDC and 300° aTDC. The results showed that the swirl ratio was slightly lower for this system compared with a SCV system (swirl control valve in the intake port) under the same operating conditions. The swirl and tumble ratios generated were not constant over the range of engine speeds and manifold pressures (MAP) but instead increased with engine speed and MAP.
X