Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Developing a Real-World, Second-by-Second Driving Cycle Database through Public Vehicle Trip Surveys

2019-07-08
2019-01-5074
Real-world second-by-second vehicle driving cycle data is very important for vehicle research and development. A project solely dedicated to generating such information would be tremendously costly and time consuming. Alternatively, we developed such a database by utilizing two publicly available passenger vehicle travel surveys: 2004-2006 Puget Sound Regional Council (PSRC) Travel Survey and 2011 Atlanta Regional Commission (ARC) Travel Survey. The surveys complement each other - the former is in low time resolution but covers driver operation for over one year whereas the latter is in high time resolution but represents only one-week-long driving operation. After analyzing the PSRC survey, we chose 382 vehicles, each of which continuously operated for one year, and matched their trips to all the ARC trips. The matching is carried out based on trip distance first, then on average speed, and finally on duration.
Technical Paper

CFD-Simulation and Validation of Cabin Pressure during Door Closing Motions

2019-04-02
2019-01-0815
Under the competitive pressure of automotive industry the customer’s focus is on a vehicle’s quality perception. Side door closing efforts make a considerable share of the overall impression as the doors are the first physical and haptic interface to the customer. Customer’s subjective feeling of vehicle quality demands for detailed analysis of each contributor of door closing efforts. Most contributors come from kinematic influences. Beside the losses due to mechanical subsystems like the checkarm, latch or hinge friction one of the biggest impacts originates from the pressure spike that builds up due to air being pushed into the cabin. Subject of this publication is to discuss the dependencies of closing efforts on cabin pressure and air extraction. It demonstrates an approach to simulate the development of the air pressure during door closing motions and the validation of the simulation method with the “EZ-Slam” measurement device.
Technical Paper

Duct Shape Optimization Using Multi-Objective and Geometrically Constrained Adjoint Solver

2019-04-02
2019-01-0823
In the recent years, adjoint optimization has gained popularity in the automotive industry with its growing applications. Since its inclusion in the mainstream commercial CFD solvers and its continuously added capabilities over the years, its productive usage became readily available to many engineers who were previously limited to interfacing the customized adjoint source code with CFD solvers. The purpose of this work is to demonstrate using an adjoint solver a method to optimize duct shape that meets multiple design objectives simultaneously. To overcome one of the biggest challenges in the duct design, i.e. the severe packaging constraints, the method here uses geometrically constrained adjoint to ensure that the optimum shape always fits into the user-defined packaging space. In this work, adjoint solver and surface sensitivity calculations are used to develop the optimization method.
Technical Paper

FRED II Quasistatic Seat Testing Rearward: An Improved Method Based on the SAE H-point Manikin

2019-04-02
2019-01-1032
Various methods have been used to load a seat in the rear direction, including FMVSS 207, assorted body blocks and QST (quasistatic seat test). However, each method lacks some critical aspect of occupant loading of the seat or is too complex for routine development work. A new method is presented to determine the strength and energy transfer of a seat to an occupant in rear impacts that reflects how an occupant interacts with the seat in a rear impact. A metal-cast H-point manikin, called FRED II, was modified to support a loading bar and was pulled rearward into the seatback by a hydraulic ram. The force and displacement of the loading and the inboard and outboard seatback angle were measured. The response of the seat was recorded by video. The moment about the recliner pivot at peak force was determined by aligning the center of the recliner in side views of the seat position initially and at peak load.
Technical Paper

Seat Performance and Occupant Moving Out of the Shoulder Belt in ABTS (All-Belts-to-Seat) in Rear Impacts

2019-04-02
2019-01-1031
This study examined occupant and seat responses with ABTS (all-belts-to-seat) in rear end collisions. Some have claimed improved ABTS seat performance and retention in rear impacts than conventional seats. ABTS seats tend to have higher ultimate yield strengths than conventional yielding seats. Most ABTS seats have asymmetric seatback stiffness due to the need for additional structure on one side of the seat to support shoulder belt loads. Many designs use a single-side recliner and single stanchion that anchors the D-ring. This asymmetry results in twisting of the seatback in severe rear impacts. Seatback twist can allow the occupant to move away from the shoulder belt. Rearward pull tests on ABTS seats also demonstrates seatback twisting and in some cases large drops in load during the test. The added strength and stiffness of ABTS seats lead to designs that are vulnerable to sudden force drops from separated parts.
Technical Paper

Detection of Presence and Posture of Vehicle Occupants Using a Capacitance Sensing Mat

2019-04-02
2019-01-1232
Capacitance sensing is the technology that detects the presence of nearby objects by measuring the change in capacitance. A change in capacitance is triggered either by a change in dielectric constant, area of overlap or distance of separation between the electrodes of the capacitor. It is a technology that finds wide use in applications such as touch screens, proximity sensing etc. Drawing motivation from such applications, this paper investigates how capacitive sensing can be employed to detect the presence and posture of occupants inside vehicles. Compared to existing solutions, the proposed approach is low-cost, easy to deploy and highly efficient. The sensing system consists of a capacitance-sensing mat that is embedded with copper foils and an associated sensing circuitry. Inside the mat the foils are arranged in rows and columns to form several touch-nodes across the surface of the mat.
Technical Paper

Design of a SiC Based Variable Voltage Converter for Hybrid Electric Vehicle

2019-04-02
2019-01-0605
Variable Voltage Converter (VVC) is adopted in Power-Split structure of hybrid electric vehicles (HEVs) to optimize the Electric-Drive (e-Drive) system performance. With the wider availability of Silicon Carbide (SiC) power semiconductor for automotive applications, there are new opportunities to further optimize and improve performance of VVC, e.g. lower power loss, smaller size, and lighter weight, comparing to use traditional Silicon (Si) IGBT and diode. In this paper, a SiC based VVC is designed, prototyped, and evaluated. In order to maximize the benefits of SiC power devices in VVC application, each key component is carefully designed and selected, including SiC power module, power capacitor, and power inductor. The characterization and evaluation results demonstrate the benefits of advanced SiC devices in VVC design optimization, and such benefits quantified in this paper.
Technical Paper

Impacts of WLTP Test Procedure on Fuel Consumption Estimation of Common Electrified Powertrains

2019-04-02
2019-01-0306
The new European test procedure, called the worldwide harmonized light vehicle test procedure (WLTP), deviates in some details from the current NEDC-based test which will have an impact on the determination of the official EU fuel consumption values for the new vehicles. The adaptation to the WLTP faces automakers with new challenges for meeting the stringent EU fuel consumption and CO2 emissions standards. This paper investigates the main changes that the new test implies to a mid-size sedan electrified vehicle design and quantifies their impact on the vehicles fuel economy. Three common electrified powertrain architectures including series, parallel P2, and powersplit are studied. A Pontryagin’s Minimum Principle (PMP) optimization-based energy management control strategy is developed to evaluate the energy consumption of the electrified vehicles in both charge-depleting (CD) and charge-sustaining (CS) modes.
Technical Paper

Full Scale Burn Demonstration of Two 2013 Ford Fusions - Arc Mapping Analysis

2018-04-03
2018-01-1439
Vehicle fire investigators sometimes use the existence and location of thermally damaged wiring (arced, shorted, melted, & beaded) discovered in a post burn analysis of a vehicle as an indication of the fire origin and its cause. One systematic method of analysis is to use the process of arc mapping. To examine the reliability of arc mapping in motor vehicle fires, two full scale burn demonstrations were conducted on 2013 Ford Fusions. Both vehicles had similar fire origins artificially initiated in the interior of the vehicles near the driver’s front seat. The engines were running and all accessories were off. During the burn sequence, occurrences of fire induced unintended electrical activity were captured with video and still photography. Examples of this unintended activity include lights, horn, wipers, and decklid latch activation. The burn concluded when the measured battery voltage went to zero in demonstration 1.
Technical Paper

Copper Effect on the Ultrasonic Fatigue Life of A356 Aluminum Alloy Under Variable Humidity Levels

2018-04-03
2018-01-1411
Ultrasonic fatigue tests (testing frequency around 20kHz) have been conducted on A356 aluminum alloys with different copper contents and AS7GU aluminum alloy. Tests were performed in dry air and submerged in water conditions. The effect of copper content was investigated and it was concluded that copper content plays an important role influencing the humidity effect on A356 aluminum alloy ultrasonic fatigue lives. Also, for the same copper content, copper in solute solution or in precipitate have different humidity sensitivities.
Technical Paper

Virtual Temperature Controlled Seat Performance Test

2018-04-03
2018-01-1317
The demand for seating comfort is growing - in cars as well as trucks and other commercial vehicles. This is expected as the seat is the largest surface area of the vehicle that is in contact with the occupant. While it is predominantly luxury cars that have been equipped with climate controlled seats, there is now a clear trend toward this feature becoming available in mid-range and compact cars. The main purpose of climate controlled seats is to create an agreeable microclimate that keeps the driver comfortable. It also reduces the “stickiness” feeling which is reported by perspiring occupants on leather-covered seats. As part of the seat design process, a physical test is performed to record and evaluate the life cycle and the performance at ambient and extreme temperatures for the climate controlled seats as well as their components. The test calls for occupied and unoccupied seats at several ambient temperatures.
Technical Paper

Policies to Maximize Fuel Economy of Plug-In Hybrids in a Rental Fleet

2018-04-03
2018-01-0670
Plug-in hybrid (PHEV) technology offers the ability to achieve zero tailpipe emissions coupled with convenient refueling. Fleet adoption of PHEVs, often motivated by organizational and regulatory sustainability targets, may not always align with optimal use cases. In a car rental application, barriers to improving fuel economy over a conventional hybrid include: diminished benefits of additional battery capacity on long-distance trips, sparse electric charging infrastructure at the fleet location, lack of renter understanding of electric charging options, and a principle-agent problem where the driver accrues fewer benefits than costs for actions that improve fuel economy, like charging and eco-driving. This study uses high-resolution driving data collected from twelve Ford Fusion Energi sedans owned by University of California, Davis (UC Davis), where the vehicles are rented out for university-related activities.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Fidelity Enhancement of Power-Split Hybrid Vehicle HIL (Hardware-in-the-Loop) Simulation by Integration with High Voltage Traction Battery Subsystem

2018-04-03
2018-01-0008
Due to the increasing concerns on energy and environmental issues, the automotive industry has seen increased growth and development of electric and electrified vehicles [1]. The power-split design is one of the most common drivetrain configurations of a hybrid or electrified vehicle. The propulsion system of a power-split hybrid vehicle typically comprises of an engine drive system in which the engine, drivetrain and generator are mechanically coupled on a planetary gear set driveline while the electric drive system consists of a high voltage battery and a traction motor [2]. In recent years, Hardware-in-the-Loop (HIL) simulation has become an increasingly common approach for controls rapid prototyping and validation as part of the automotive product development cycle [2, 3].
Journal Article

Aerodynamic Investigation of Cooling Drag of a Production Pickup Truck Part 1: Test Results

2018-04-03
2018-01-0740
The airflow that enters the front grille of a ground vehicle for the purpose of component cooling has a significant effect on aerodynamic drag. This drag component is commonly referred to as cooling drag, which denotes the difference in drag measured between open grille and closed grille conditions. When the front grille is closed, the airflow that would have entered the front grille is redirected around the body. This airflow is commonly referred to as cooling interference airflow. Consequently, cooling interference airflow can lead to differences in vehicle component drag; this component of cooling drag is known as cooling interference drag. One mechanism that has been commonly utilized to directly influence the cooling drag, by reducing the engine airflow, is active grille shutters (AGS). For certain driving conditions, the AGS system can restrict airflow from passing through the heat exchangers, which significantly reduces cooling drag.
Technical Paper

Accelerated Corrosion Testing of Automotive Evaporators and Condensers

2018-04-03
2018-01-0062
There is an ongoing effort in the industry to develop an accelerated corrosion test for automotive heat exchangers. This has become even more important as automakers are focusing on corrosion durability of 15 years in the field versus current target of 10 years. To this end an acid immersion test was developed and reported in a previous paper for condensers (1). This paper extends those results to evaporators and establishes the efficacy of the test using these results and those reported in the literature. The paper also discusses variability in corrosion test results as observed in tests such as ASTM G85:A3 Acidified Synthetic Sea Water Test (SWAAT), and its relation to field durability.
Technical Paper

Model Prediction Based Boost Converter Control Method for HEV Applications

2018-04-03
2018-01-0452
Boost converter is widely applied to hybrid electric vehicles (HEV). Typical control methods employ two proportional-integral (PI) regulators to fulfill DC bus voltage closed-loop control and inductor current closed-loop control, respectively. They have intrinsic performance limitations: 1) slow dynamic response of DC bus voltage regulation; 2) high overshoot voltage during transient state; 3) it is difficult to design four gains best fit all operational conditions. This paper proposes a model prediction based boost converter control method for HEV applications. The proposed control method employs model based instantaneous power prediction and dynamic optimization in real time by minimizing a defined cost function to overcome above issues. First of all, the issues of typical control methods are analyzed. Then, the proposed control method is presented in detail, followed by simulation verification and comparison with PI based control method.
Technical Paper

System-Level Investigation of Traction Inverter High-Temperature Operation

2018-04-03
2018-01-0464
In this paper, the high-temperature capability of the traction inverter was investigated by applying coolant with temperature much higher than the typical allowed value until the system fails. The purpose of this study is to identify the weakest link of the traction inverter system in terms of temperature. This study was divided into two stages. In the first stage, a series of nondestructive tests were carried out to investigate temperature rise (ΔT) of the key component above coolant temperature as a function of the outside controllable parameters-i.e., dc link voltage, phase current, and switching frequency. The key components include power modules, gate driver board, gate driver power supply, current sensors and dc link capacitor. Their temperatures were monitored by thermocouples or on-die temperature sensors.
Technical Paper

A Packaging Layout to Mitigate Crosstalk for SiC Devices

2018-04-03
2018-01-0462
SiC devices have inherent fast switching capabilities due to their superior material properties, and are considered potential candidates to replace Si devices for traction inverters in electrified vehicles in future. However, due to the comparatively low gate threshold voltage, SiC devices may encounter oscillatory false triggering especially during fast switching. This paper analyzed the causes of false triggering, and also studied the impact of a critical parasitic parameter - common source inductance. It is shown that crosstalk is the main cause for the false triggering in the case and some positive common source inductance help to mitigate the crosstalk issue. A packaging layout method is proposed to create the positive common source inductance through layout of control terminals / busbars, and/or the use of control terminal bonded wires at different height.
X