Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Next Generation High Efficiency Boosted Engine Concept

2024-04-09
2024-01-2094
This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature.
Technical Paper

Connected Vehicle Data Applied to Feature Optimization and Customer Experience Improvement

2024-01-08
2023-36-0109
In a recent time, which new vehicle lines comes with a huge number of sensors, control units, embedded technologies, and the complexity of these systems (electronics, electrical and electromechanical parts) increases in an exponential way. Considering these events, the expressive generated data amount grows in the same pace, so, consume, transform, and analyze all these data to better understand the modern customer, their needs and how they use the car features becomes necessary. Through that scenario, connected vehicles developed by Ford Motor Company has been generating opportunities to feature’s improvement and cost reduction based on data analysis. This growing quantity of data might be used to optimize feature systems and help engineering teams to understand how the features have been used and enhance the systems engineering design for new or existing features.
Technical Paper

Driving Towards a Sustainable Future: Leveraging Connected Vehicle Data for Effective Carbon Emission Management

2024-01-08
2023-36-0145
The rise of greenhouse gas emissions has reached historic levels, with 37 billion tons of CO2 released into the atmosphere in 2018 alone. In the European Union, 32% of these emissions come from transportation, with 73.3% of that percentage coming from vehicles. To address this problem, solutions such as cleaner fuels and more efficient engines are necessary. Artificial Intelligence can also play a crucial role in climate analysis and verification to move towards a more sustainable future. By utilizing connected vehicle data, automakers can analyze real-time vehicle performance data to identify opportunities for improvement and reduce carbon emissions. This approach benefits the environment, improves vehicle quality, and reduces engineering work time, making it a win-win solution. Connected vehicle data offers a wealth of information on vehicle performance, such as fuel consumption and carbon emissions.
Technical Paper

Development of a 5-Component Diesel Surrogate Chemical Kinetic Mechanism Coupled with a Semi-Detailed Soot Model with Application to Engine Combustion and Emissions Modeling

2023-08-28
2023-24-0030
In the present work, five surrogate components (n-Hexadecane, n-Tetradecane, Heptamethylnonane, Decalin, 1-Methylnaphthalene) are proposed to represent liquid phase of diesel fuel, and another different five surrogate components (n-Decane, n-Heptane, iso-Octane, MCH (methylcyclohexane), Toluene) are proposed to represent vapor phase of diesel fuel. For the vapor phase, a 5-component surrogate chemical kinetic mechanism has been developed and validated. In the mechanism, a recently updated H2/O2/CO/C1 detailed sub-mechanism is adopted for accurately predicting the laminar flame speeds over a wide range of operating conditions, also a recently updated C2-C3 detailed sub-mechanism is used due to its potential benefit on accurate flame propagation simulation. For each of the five diesel vapor surrogate components, a skeletal sub-mechanism, which determines the simulation of ignition delay times, is constructed for species C4-Cn.
Technical Paper

Model Based Systems Engineering Application in Automotive Industry

2023-04-11
2023-01-0091
Auto industry has faced constant challenges in the economic, technology and global trend in the recent years. This is changing the corporative mindset to find creative and innovative processes and methods to evolve the product development system to adjust and deliver competitive products that satisfy customers expectations. Integrating the work from different teams in an organization has been moving from simple roles and responsibilities definition with effective communication channels to a new vision where teamwork progresses in harmony and embraces change to satisfy customers as part of the process. The path to evolve work in engineering that relies on several computational tools continues. In this article, it is presented an integration of different tools to manage vehicle program changes using model-based systems engineering, the present work improves the reaction capabilities of the teams and enables to adjust to changes in the development of a vehicle.
Technical Paper

High Cell Density Flow Through Substrate for New Regulations

2023-04-11
2023-01-0359
This paper, written in collaboration with Ford, evaluates the effectiveness of higher cell density combined with higher porosity, lower thermal mass substrates for emission control capability on a customized, RDE (Real Driving Emissions)-type of test cycle run on a chassis dynamometer using a gasoline passenger car fitted with a three-way catalyst (TWC) system. Cold-start emissions contribute most of the emissions control challenge, especially in the case of a very rigorous cold-start. The majority of tailpipe emissions occur during the first 30 seconds of the drive cycle. For the early engine startup phase, higher porosity substrates are developed as one part of the solution. In addition, further emission improvement is expected by increasing the specific surface area (GSA) of the substrate. This test was designed specifically to stress the cold start performance of the catalyst by using a short, 5 second idle time preceding an aggressive, high exhaust mass flowrate drive cycle.
Technical Paper

Graphene: an overview of technology in the electric vehicles of the future

2023-02-10
2022-36-0100
In recent years there has been an increase in the development of vehicles that use alternative energy sources, more specifically electric vehicles, intending to establish the transition from combustion engines, bringing to the automotive chain a reduction in the consumption of fossil fuels. Electrified vehicles help to improve air quality by drastically reducing the emission of harmful gases and contributing to a considerable improvement in sound quality, due to the use of their silent electric motors. A material allied to these alternative technologies is graphene, few layers (usually up to 6) of Carbon atoms arranged in a hexagonal and crystalline form in a two-dimensional plane lattice. Its unique chemical structure allows it to share its exceptional properties with other materials, making it a strong candidate to meet the needs and improve products of the automotive sector.
Technical Paper

Evolution of India EV Ecosystem

2022-10-05
2022-28-0035
Electric vehicles (EVs) are a promising and proven technology for achieving sustainable mobility with zero carbon emissions, very low noise pollution, and reducing the dependency on fossil fuels. Global EV sales have been increasing by ~110 % since 2015, with a significant rise in 2021 (~6.75 mils EV registered) mainly led by China, the US, and Europe, amplifying the EV market share to 8.3% compared to 4.2% in 2020. Future developments aimed at designing better batteries and charging technologies that reduce charging time, reduce initial battery cost, and increased flexibility. In India, EVs are emerging significantly due to stringent Carbon di Oxide (CO2) reduction drives, increasing crude oil prices, and the availability of cheaper renewable energy. Leveraging government promotional policies, evolving the entire ecosystem, globally advantageous manufacturing costs, and competitive engineering skills form the perfect blend for India.
Technical Paper

Generation of Reactive Chemical Species/Radicals through Pilot Fuel Injection in Negative Valve Overlap and Its Effects on Engine Performances

2022-08-30
2022-01-1002
This study investigated the potential of generating reactive chemical species (including radicals) through pilot fuel injection in negative valve overlap for improving the combustion and emissions performances of spark ignition gasoline engines under low load and low speed operating conditions. Several Ford sub-models were used for simulating the physics and chemistry processes of injecting a small amount of fuel in NVO (negative valve overlap). Effects of different NVO degrees and different pilot injection timings, factors for fuel conversion were simulated and investigated. CO and H2 conversions during NVO, CO and H2 amounts before spark timing were used for comparing different schemes.
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Technical Paper

On the Utility of Ammonia Sensors for Diesel Emissions Control

2022-03-29
2022-01-0549
This paper analyzes the use of an ammonia sensor for feedback control in diesel exhaust systems. We build our case around the specific example of the heavy duty transient cycle, and an exhaust system with an SCR catalyst, a single urea injector and an upstream and downstream NOx sensor. A key component in our analysis is the inclusion of the tolerance of the ammonia sensor. We show that with the current understanding of the sensor tolerance, the ammonia sensor has limited benefit for controls.
Technical Paper

U-Bolt Pre-Load and Torque Capacity Determination Using Non-Linear CAE

2022-03-29
2022-01-0773
This paper presents a method of using CAE to determine the pre-load and torque applied to a U-Bolt rear Spring Seat. In this paper it is review two U-bolt design and the stresses generated by the pre-load torque applied, based in this study a process to determine the minimal preload and the torque is discussed. By this process it is possible to determine the minimum Torque and the correct pre-load in the U-Bolt element and assuring the correct fastening of the components avoiding over stress in the Bar elements.
Journal Article

Laser-Based In-Exhaust Gas Sensor for On-Road Vehicles

2022-03-29
2022-01-0535
A novel laser-absorption gas sensing apparaOn-vehicle Testing at VERtus capable of measuring NO directly within vehicle exhaust was developed and tested. The sensor design was enabled by key advances in the construction of optical probes that are sufficiently compact for deployment in real-world exhaust systems and can survive the harsh, high-temperature, and strongly vibrating environment typical of exhaust streams. Prototype test campaigns were conducted at high-temperature flow facilities intended to simulate exhaust gas conditions and within the exhaust of vehicles mounted on a chassis dynamometer. Results from these tests demonstrated that the sensor prototype is fundamentally free of cross-interference with competing species in the exhaust stream, can achieve a 1 ppmv NO detection limit, and can be operated across the full range of thermodynamic conditions expected for typical vehicle exhausts.
Technical Paper

Application of the Power-Based Fuel Consumption Model to Commercial Vehicles

2021-04-06
2021-01-0570
Fuel power consumption for light duty vehicles has previously been shown to be proportional to vehicle traction power, with an offset for overhead and accessory losses. This allows the fuel consumption for an individual powertrain to be projected across different vehicles, missions, and drive cycles. This work applies the power-based model to commercial vehicles and demonstrates its usefulness for projecting fuel consumption on both regulatory and customer use cycles. The ability to project fuel consumption to different missions is particularly useful for commercial vehicles, as they are used in a wide range of applications and with customized designs. Specific cases are investigated for Light and Medium Heavy- Duty work trucks. The average power required by a vehicle to drive the regulatory cycles varies by nearly a factor 10 between the Class 4 vehicle on the ARB Transient cycle and the loaded Class 7 vehicle at 65 mph on grade.
Journal Article

Quantitative Analysis of Gasoline Direct Injection Engine Emissions for the First 5 Firing Cycles of Cold Start

2021-04-06
2021-01-0536
A series of cold start experiments using a 2.0 liter gasoline turbocharged direct injection (GTDI) engine with custom controls and calibration were carried out using gasoline and iso-pentane fuels, to obtain the cold start emissions profiles for the first 5 firing cycles at an ambient temperature of 22°C. The exhaust gases, both emitted during the cold start firing and emitted during the cranking process right after the firing, were captured, and unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start were analyzed and quantified. The HCs emitted during gasoline-fueled cold starts was found to reduce significantly as the engine cycle increased, while CO and CO2 emissions were found to stay consistent for each cycle. Crankcase ventilation into the intake manifold through the positive-crankcase ventilation (PCV) valve system was found to have little effect on the emissions results.
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
Technical Paper

How Well Can mPEMS Measure Gas Phase Motor Vehicle Exhaust Emissions?

2020-04-14
2020-01-0369
“Real world emissions” is an emerging area of focus in motor vehicle related air quality. These emissions are commonly recorded using portable emissions measurement systems (PEMS) designed for regulatory application, which are large, complex and costly. Miniature PEMS (mPEMS) is a developing technology that can significantly simplify on-board emissions measurement and potentially promote widespread use. Whereas full PEMS use analyzers to record NOx, CO, and HCs similar to those in emissions laboratories, mPEMS tend to use electrochemical sensors and compact optical detectors for their small size and low cost. The present work provides a comprehensive evaluation of this approach. It compares measurements of NOx, CO, CO2 and HC emissions from five commercial mPEMS to both laboratory and full regulatory PEMS analyzers. It further examines the use of vehicle on-board diagnostics data to calculate exhaust flow, as an alternative to on-vehicle exhaust flow measurement.
Technical Paper

How Well Can mPEMS Measure Particulate Matter Motor Vehicle Exhaust Emissions?

2020-04-14
2020-01-0391
Real world emissions are increasingly the standard of comparison for motor vehicle exhaust impact on the environment. The ability to collect such data has thus far relied primarily on full portable emissions measurement systems (PEMS) that are bulky, expensive, and time consuming to set up. The present work examines four compact, low cost, miniature PEMS (mPEMS) that offer the potential to expand our ability to record real world exhaust emissions over a larger number of operating conditions and combustion engine applications than currently possible within laboratory testing. It specifically addresses the particulate matter (PM) capabilities of these mPEMS, which employ three different methodologies for particle measurement: diffusion charger, optical scattering, and a multi-sensor approach that combines scattering, opacity, and ionization. Their performance is evaluated against solid particle number and PM mass with both vehicle tests and flame generated soot.
Technical Paper

Combustion and Emission Characteristics of SI and HCCI Combustion Fueled with DME and OME

2020-04-14
2020-01-1355
DME has been considered an alternative fuel to diesel fuel with promising benefits because of its high reactivity and volatility. Research shows that an engine fueled with DME will produce zero smoke emissions. However, the storage and the handling of the fuel are underlying difficulties owing to its high vapour pressure (530 kPa @ 20 °C). In lieu, OME1 fuel, a derivate of DME, offers advantages exhibited with DME fuel, all the while being a liquid fuel for engine application. In this work, engine tests are performed to realize the combustion behaviour of DME and OME1 fuel on a single-cylinder research engine with a compression ratio of 9.2:1. The dilution ratio of the mixture is progressively increased in two manners, allowing more air in the cylinder and applying exhaust gas recirculation (EGR). The high reactivity of DME suits the capability to be used in compression ignition combustion whereas OME1 must be supplied with a supplemental spark to initiate the combustion.
Technical Paper

Recent Advances in Swelling Resistance of Graphene-Based Rubber Compounds

2020-04-14
2020-01-0769
Recently, graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. This review will focus on the latest studies and recent progress in the swelling resistance of rubber compounds due to the addition of graphene and its derivatives. This work will present the state-of-the-art in this subject area and will highlight the advantages and current limitations of the use of graphene for potential future researches.
X