Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Duct Shape Optimization Using Multi-Objective and Geometrically Constrained Adjoint Solver

2019-04-02
2019-01-0823
In the recent years, adjoint optimization has gained popularity in the automotive industry with its growing applications. Since its inclusion in the mainstream commercial CFD solvers and its continuously added capabilities over the years, its productive usage became readily available to many engineers who were previously limited to interfacing the customized adjoint source code with CFD solvers. The purpose of this work is to demonstrate using an adjoint solver a method to optimize duct shape that meets multiple design objectives simultaneously. To overcome one of the biggest challenges in the duct design, i.e. the severe packaging constraints, the method here uses geometrically constrained adjoint to ensure that the optimum shape always fits into the user-defined packaging space. In this work, adjoint solver and surface sensitivity calculations are used to develop the optimization method.
Technical Paper

One piece hot formed AB ring reinforcement

2018-09-03
2018-36-0022
The usage of Boron steel in the South American automotive industry has been increasing in recent years. Considering its high hardening properties, sheet metal parts can only be manufactured using a hot forming process, as compared to a conventional cold forming process; however, the hot stamping process offers the advantage to stamp a part in a single die vs. multiple dies using a regular cold stamping process. The main objective is to present the advantages of constructing the whole AB ring reinforcement out of Boron steel and made out of a single die, and no welding among the A pillar reinforcement, B Pillar reinforcement and rocker panel. This type of design has helped to achieve crash safety performance goals, enhance the structural characteristics of joints, improve dimensional control, reduce the number of welds, manage BIW overall weight and improve torsion rigidity.
Technical Paper

Copper Effect on the Ultrasonic Fatigue Life of A356 Aluminum Alloy Under Variable Humidity Levels

2018-04-03
2018-01-1411
Ultrasonic fatigue tests (testing frequency around 20kHz) have been conducted on A356 aluminum alloys with different copper contents and AS7GU aluminum alloy. Tests were performed in dry air and submerged in water conditions. The effect of copper content was investigated and it was concluded that copper content plays an important role influencing the humidity effect on A356 aluminum alloy ultrasonic fatigue lives. Also, for the same copper content, copper in solute solution or in precipitate have different humidity sensitivities.
Technical Paper

Experimental Investigation on the Influence of Pressure Wheel Design on Heat Dissipation for a Laser Robotic End of Arm Tooling

2018-04-03
2018-01-1235
The initiative of this paper is focused on improving the heat dissipation from the pressure wheel of a laser welding assembly in order to achieve a longer period of use. The work examines the effects of different geometrical designs on the thermal performance of pressure wheel assembly during a period of cooling time. Three disc designs were manufactured for testing: Design 1 – a plain wheel, Design 2 – a pierced wheel, and Design 3 – a wheel with ventilating vanes. All of the wheels were made of carbon steel. The transient thermal reaction were compared. The experimental results indicate that the ventilated wheel cools down faster with the convection in the ventilated channels, while the solid plain wheel continues to possess higher temperatures. A comparison among the three different designs indicates that the Design 3 has the best cooling performance.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

A Packaging Layout to Mitigate Crosstalk for SiC Devices

2018-04-03
2018-01-0462
SiC devices have inherent fast switching capabilities due to their superior material properties, and are considered potential candidates to replace Si devices for traction inverters in electrified vehicles in future. However, due to the comparatively low gate threshold voltage, SiC devices may encounter oscillatory false triggering especially during fast switching. This paper analyzed the causes of false triggering, and also studied the impact of a critical parasitic parameter - common source inductance. It is shown that crosstalk is the main cause for the false triggering in the case and some positive common source inductance help to mitigate the crosstalk issue. A packaging layout method is proposed to create the positive common source inductance through layout of control terminals / busbars, and/or the use of control terminal bonded wires at different height.
Technical Paper

Evolution of Engine Air Induction System Hydrocarbon Traps

2017-03-28
2017-01-1014
Engine air induction systems hydrocarbon trap (HC trap) designs to limit evaporative fuel emissions, have evolved over time. This paper discusses a range of HC traps that have evolved in engine air induction systems. (AIS) The early zeolite flow through HC trap utilized an exhaust catalyst technology internal stainless steel furnace brazed substrate coated with zeolite media. This HC trap was installed in the AIS clean air tube. This design was heavy, complicated, and expensive but met the urgency of the implementation of the new evaporative emissions regulation. The latest Ford Motor Company HC trap is a simple plastic tray containing activated carbon with breathable non-woven polyester cover. This design has been made common across multiple vehicle lines with planned production annual volume in the millions. The cost of the latest HC trap bypass design is approximately 5% of the original stainless steel zeolite flow through HC trap.
Technical Paper

Wear of D2 Tool Steel Dies during Trimming DP980-type Advanced High Strength Steel (AHSS) for Automotive Parts

2017-03-28
2017-01-1706
Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
Technical Paper

MyFord Dock Development

2017-03-28
2017-01-1694
Demand for enhanced infotainment systems with features like navigation, real-time traffic, music streaming service, mirroring and others is increasing, forcing automakers to develop solutions that fulfill customer needs. However, many of those systems are too expensive to be fitted to an entry-level vehicle leaving a gap in the market that fails customer’s expectation. This gap is usually filled by a smartphone which may have all the features the customer wants but in many cases it cannot be properly fitted in the vehicle due to lack of specific storage space. This paper describes how the engineering team developed an innovative, flexible and effective solution that holds a smartphone in an ergonomic location.
Journal Article

Analysis of Tool Wear for Trimming of DP980 Sheet Metal Blanks

2017-03-28
2017-01-0302
In recent years, implementation of dual phase (DP) Advanced High Strength Steels (AHSS) and Ultra High Strength Steels (UHSS) is increasing in automotive components due to their superior structural performance and vehicle weight reduction capabilities. However, these materials are often sensitive to trimmed edge cracking if stretching along sheared edge occurs in such processes as stretch flanging. Tool wear is another major issue in the trimming of UHSS because of higher contact pressures at the interface between cutting tools and sheet metal blank caused by UHSS’s higher flow stresses and the presence of a hard martensitic in the microstructure. The objective of the present paper is to discuss the methodology of analyzing die wear for trimming operations of UHSS components and illustrate it with some examples of tool wear analysis for trimming 1.5mm thick DP980 steel.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Journal Article

Damping properties and NVH Modal Analysis Results of Carbon Fiber Composite Vehicle Components

2017-03-28
2017-01-0500
With the continuing challenges of future fuel economy targets carbon fiber composite materials are one facet of a lightweighting strategy to enable reduced fuel consumption. In general, use of lightweight materials such as carbon fiber composites in vehicle design generates vehicle NVH performance degradation. To address this potential issue at the design phase, there is a need to develop correlated CAE models for carbon fiber vehicle parts to evaluate the NVH impact of carbon fiber composite material use in vehicle design. To develop correlated CAE models for lightweight vehicle design with the use of carbon fiber composite vehicle body parts, an experimental study was conducted to determine the material and NVH characteristics of the carbon fiber composite materials. In this paper, the damping properties and NVH modal analysis results for structural carbon fiber thermoset composite panels and body parts (B-pillar upper insert and B-pillar lower insert) is presented.
Technical Paper

Deconstruction of UN38.3 into a Process Flowchart

2017-03-28
2017-01-1208
This paper will discuss a compliance demonstration methodology for UN38.3, an international regulation which includes a series of tests that, when successfully met, ensure that lithium metal and lithium ion batteries can be safely transported. Many battery safety regulations, such as FMVSS and ECE, include post-crash criteria that are clearly defined. UN38.3 is unique in that the severity of the tests drove changes to battery design and function. Another unique aspect of UN38.3 is that the regulatory language can lead to different interpretations on how to run the tests and apply pass/fail criteria; there is enough ambiguity that the tests could be run very differently yet all meet the actual wording of the regulation. A process was created detailing exactly how to run the tests to improve consistency among test engineers. As part of this exercise, several tools were created which assist in generating a test plan that complies with the UN38.3 regulation.
Journal Article

CAE Method for Evaluating Mechanical Performance of Battery Packs under Mechanical Shock Testing

2017-03-28
2017-01-1193
Mechanical shock tests for lithium metal and lithium-ion batteries often require that each cell or battery pack be subjected to multiple shocks in the positive and negative directions, of three mutually perpendicular orientations. This paper focuses on the no-disassembly requirement of those testing conditions and on the CAE methodology specifically developed to perform this assessment. Ford Motor Company developed a CAE analysis method to simulate this type of test and assess the possibility of cell dislodging. This CAE method helps identify and diagnose potential failure modes, thus guiding the Design Team in developing a strategy to meet the required performance under shock test loads. The final CAE-driven design focuses on the structural requirement and optimization, and leads to cost savings without compromising cell or pack mechanical performance.
Technical Paper

Effect of Engine Motion on the Fatigue Life of Cooling Components

2017-03-28
2017-01-0337
Ensuring durability is one of the key requirements while developing cooling modules for various powertrains. Typically, road surface induced loads are the main driving force behind mechanical failures. While developing the components, road load accelerations are utilized in CAE simulations to predict the high-stress regions and estimate the fatigue life of the components mounted on the body. In certain scenarios where components are mounted to the body and attached to the engine with hoses, the components can experience additional loads associated with engine vibration. This attachment scheme requires a different analysis methodology to determine fatigue life. In the proposed paper, we look at the effect of engine motion (EM) on the fatigue life of internal transmission oil cooler (ITOC) which is mounted on the body through radiator and is simultaneously connected to the engine using a steel pipe. We propose a new CAE methodology taking into account the engine motion displacements.
Technical Paper

A Method of Evaluating the Joint Effectiveness on Contribution to Global Stiffness and NVH Performance of Vehicles

2017-03-28
2017-01-0376
While Advanced High Strength Steels (AHSS) and the next generation AHSS grades offer improved crash safety and reduced weight for vehicles, the global stiffness and NVH performance are often compromised due to reduced material thickness. This paper discusses an advanced method of evaluating the joint effectiveness on contribution to global stiffness and NVH performance of vehicles. A stiffness contribution ratio is proposed initiatively in this research, which evaluates the current contribution of the joints to the global stiffness and NVH performance of vehicles. Another parameter, joint effectiveness factor, has been used to study the potential of each joint on enhancing the global stiffness. The critical joints to enhance the vehicle stiffness and NVH performance can be identified based on above two parameters, and design changes be made to those critical joints to improve the vehicle performance.
Journal Article

The Effects of CO, C2H4, and H2O on the NOx Storage Performance of Low Temperature NOx Adsorbers for Diesel Applications

2017-03-28
2017-01-0942
Model low temperature NOx adsorbers (LTNA) consisting of Pd on a ceria/zirconia washcoat on monoliths were evaluated for low temperature NOx storage under lean conditions to assess their potential for adsorbing the cold-start NOx emissions on a diesel engine during the period before the urea/SCR system becomes operational. A reactor-based transient test was performed with and without C2H4, CO/H2, and H2O to assess the effects of these species on the NOx storage performance. In the absence of C2H4 or CO/H2, H2O severely suppressed the NOx storage of these model LTNAs at temperatures below 100°C, presumably by blocking the storage sites. When C2H4 was included in the feedgas, H2O still suppressed the NOx storage below 100°C. However, the C2H4 significantly increased the NOx storage efficiency above 100°C, attributable to the formation of alkyl nitrites or alkyl nitrates on the catalyst.
Technical Paper

High Frequency Sloshing - Energy Dissipation and Viscous Damping through CFD

2017-03-28
2017-01-1317
Liquid sloshing is an important issue in ground transportation, aerospace and automotive applications. Effects of sloshing in a moving liquid container can cause various issues related to vehicle stability, safety, component fatigue, audible noise and, liquid level measurement. The sloshing phenomenon is a highly nonlinear oscillatory movement of the free-surface of liquid inside a container under the effect of continuous or momentarily excitation forces. These excitation forces can result from sudden acceleration, braking, sharp turning or pitching motions. The sloshing waves generated by the excitation forces can impact on the tank surface and cause additional vibrations. For the loads with the frequencies between 2 to 200 Hz, the structural fatigue failure is a major concern for automotive applications.
Technical Paper

Evaluating the Benefits of On-Board Measurement of Ambient Humidity Part-2: Effect on Torque Estimation Accuracy and Drivability

2016-04-05
2016-01-1068
Engine Mapping is usually performed under nominal conditions which include a humidity level of 8 g/Kg. Customers driving at different humidity conditions (which may range from 1 g/Kg in dry and colder climates and up to 35 g/Kg as in tropical climates) may experience a degraded performance due to the errors in engine torque estimation provided by the ECU. The torque estimation error interacts with many other features that affect drivability, such as the peak performance of the engine, transmission shift quality, etc. This paper extends the investigation in Part-1 by analyzing and quantifying the torque estimation error that may result in certain customer use cases at high humidity conditions, due to the mismatch between calibrated and actual conditions. The analysis is mainly performed for Speed-Density systems (MAP sensor based) but the effect of mass air flow sensor (MAF sensor) based systems is also briefly considered.
Journal Article

Effect of Humidity on the Very High Cycle Fatigue Behavior of a Cast Aluminum Alloy

2016-04-05
2016-01-0371
In this paper, fatigue tests on a cast aluminum alloy (AS7GU-T64) were performed under different frequencies and humidity levels. Tests conducted under conventional frequency in laboratory air have been compared to tests conducted under ultrasonic frequency in dry air, saturated humidity and in distilled water. It was observed that the highest and lowest fatigue lives correspond to ultrasonic fatigue tests in dry air and in distilled water, respectively. Unlike specimens tested at conventional frequency, all of the specimens tested at ultrasonic frequency presented a large amount of slip facets on the fatigue crack propagation fracture surface.
X