Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

INCORPORATING METHODS OF GRAPHENE IN POLYMERIC NANOCOMPOSITES TOWARDS AUTOMOTIVE APPLICATIONS -A BRIEF REVIEW

2024-01-08
2023-36-0015
This work aims to develop a PA6 nanocomposite with glass fiber (GF) and graphene nanoplatelets (GNPs) focusing on automotive parts application. Polyamide 6 is a semi-crystalline polymer that exhibits high fatigue and flexural strength, making it viable for rigorous applications. Along with the improved electrical, mechanical, thermal, and optical performance achieved in PA6 and GF-based nanocomposites, they can fill complex geometries, have great durability, and are widely utilized due to their capacity of reducing the weight of the vehicle besides a cost reduction potential. The glass fiber is a filamentary composite, usually aggregated in polymeric matrices, which aims to amplify the mechanical properties of polymers, mainly the tensile strength in the case of PA6.
Technical Paper

Residual Stress Induced Fretting Fatigue during Fatigue Testing for Materials Produced by Laser Powder Bed Fusion Process

2023-04-11
2023-01-0894
Fretting fatigue was observed in standard cylindrical fatigue samples at the regions in contact with the grips of the test frames during fatigue testing for AlSi10Mg aluminum alloy produced by laser powder bed fusion process (L-PBF). The failure of the fatigue sample grips occurs much earlier than the failure of the gauge section. This results in a damaged sample and the sample cannot be reused to continue the test. This type of failure is rarely seen in materials produced by traditional manufacturing processes. In this study, X-ray residual stress analysis was performed to understand the cause of failure for L-PBF AlSi10Mg with the as-built surface condition. The result indicates that the fretting fatigue failure was caused by the strong tensile residual stress in the as-built state combining with the fretting wear between the sample and the grip. A few potential solutions to avoid the fretting fatigue failure were investigated.
Technical Paper

Virtual Methods for Water Management in Automotive Structures

2023-04-11
2023-01-0933
The requirements of the automotive industry move along due to product competitiveness and this contributes to increase complexity in the requirements for evaluation. Simulation tools play a key role thanks to their versatility and multiple physical phenomena that can be represented. The axis of analysis for this paper is the problem of the interaction of airflow and water flow in the cowl/plenum/leaf screen components. Airflow is represented by HVAC system operating and water flow by the vehicle in torrential rain. Initially, one simulation is evaluated at a time, in one side, the airflow entering the HVAC system in which the amount of air entering is monitored and pressure drop, on the other, the water simulation on the vehicle, both using a Lagrangian CFD model (using with tools such as STAR CCM+® or Ansys Fluent®) Due to this, a CFD methodology was developed to evaluate the interaction of air and water flow.
Technical Paper

Generation of Reactive Chemical Species/Radicals through Pilot Fuel Injection in Negative Valve Overlap and Its Effects on Engine Performances

2022-08-30
2022-01-1002
This study investigated the potential of generating reactive chemical species (including radicals) through pilot fuel injection in negative valve overlap for improving the combustion and emissions performances of spark ignition gasoline engines under low load and low speed operating conditions. Several Ford sub-models were used for simulating the physics and chemistry processes of injecting a small amount of fuel in NVO (negative valve overlap). Effects of different NVO degrees and different pilot injection timings, factors for fuel conversion were simulated and investigated. CO and H2 conversions during NVO, CO and H2 amounts before spark timing were used for comparing different schemes.
Journal Article

Improving Keyhole Stability during Laser Welding of AA5xxx Alloys

2022-03-29
2022-01-0247
Laser welding of the magnesium-bearing AA5xxx aluminum alloys is often beset by keyhole instability, especially in the lap through joint configuration. This phenomenon is characterized by periodic collapse of the keyhole leaving large voids in the weld zone. In addition, the top surface can exhibit undercut and roughness. In full penetration welds, keyhole instability can also produce a spikey root and severe top surface concavity. These discontinuities could prevent a weld from achieving engineering specification compliance, pose a craftsmanship concern, or reduce the strength and fatigue performance of the weld. In the case of a full penetration weld, a spikey root could compromise part fit-up and corrosion protection, or damage adjacent sheet metal, wiring, interior components, or trim.
Technical Paper

High-Cycle Fatigue of Polyamide-6,6 and Glass Fiber-Based Short Fiber Composite Using Finite Element Analysis

2021-05-11
2021-01-5051
As the automotive industry strives for an increased fuel economy, lightweighting is a key factor and can be realized through composite materials. Composites have better strength-to-weight ratio as compared to metals. In this paper, static and fatigue analysis is performed on an oil pan made of polyamide-6,6 and 50% glass fiber (PA66-GF50). PA66 has a glass transition temperature of 170°C; therefore, it is suitable for automotive applications where the operating range is −40°C to 150°C. Long glass fiber (LGF) composite has an aspect ratio of 30-50 in the oil pan. Fibers break in the molding process but are still considerably longer than with conventionally compounded short glass fiber (SGF) composite, where the aspect ratio of fiber is between 10 and 20. However, the computer-aided engineering (CAE) procedure for life prediction of short glass fiber-reinforced (SGFR) plastic versus LGF-reinforced plastic is the same.
Technical Paper

Investigation of Mechanical Behavior of Chopped Carbon Fiber Reinforced Sheet Molding Compound (SMC) Composites

2020-04-14
2020-01-1307
As an alternative lightweight material, chopped carbon fiber reinforced Sheet Molding Compound (SMC) composites, formed by compression molding, provide a new material for automotive applications. In the present study, the monotonic and fatigue behavior of chopped carbon fiber reinforced SMC is investigated. Tensile tests were conducted on coupons with three different gauge length, and size effect was observed on the fracture strength. Since the fiber bundle is randomly distributed in the SMC plaques, a digital image correlation (DIC) system was used to obtain the local modulus distribution along the gauge section for each coupon. It was found that there is a relationship between the local modulus distribution and the final fracture location under tensile loading. The fatigue behavior under tension-tension (R=0.1) and tension-compression (R=-1) has also been evaluated.
Technical Paper

Full Body Car Analysis in the Time and Frequency Domains - Sheet, Spot and Seam Weld Fatigue Benchmark Studies

2020-04-14
2020-01-0195
The fatigue analysis of a full car body requires the sheet metal (sheet fatigue), spot welds (spot weld fatigue) and seam welds (seam weld fatigue) to be thoroughly evaluated for durability. Traditionally this has always been done in the time domain, but recently new frequency domain techniques are able to perform these tasks with numerous advantages. This paper will summarize the frequency domain process and then compare the results and performance against the more usual time domain process.
Journal Article

Optimal Pressure Relief Groove Geometry for Improved NVH Performance of Variable Displacement Oil Pumps

2019-06-05
2019-01-1548
Variable Displacement Oil Pump (VDOP) is becoming the design of choice for engine friction reduction and fuel economy improvement. Unfortunately, this pump creates excessive pressure ripples, at the outlet port during oil pump shaft rotation, causing oscillating forces within the lubrication system and leading to the generation of objectionable tonal noises and vibrations. In order to minimize the level of noise, different vanes spacing and porting geometries are used. Moreover, an oil pressure relief groove can be added, at the onset of the high pressure port, to achieve this goal. This paper presents an optimization method to identify the best geometry of the oil pressure relief groove. This method integrates adaptive meshing, 3D CFD simulation, Matlab routine and Genetic Algorithm based optimization. The genetic algorithm is used to create the required design space in order to perform a multi-objective optimization using a large number of parameterized groove geometries.
Technical Paper

Duct Shape Optimization Using Multi-Objective and Geometrically Constrained Adjoint Solver

2019-04-02
2019-01-0823
In the recent years, adjoint optimization has gained popularity in the automotive industry with its growing applications. Since its inclusion in the mainstream commercial CFD solvers and its continuously added capabilities over the years, its productive usage became readily available to many engineers who were previously limited to interfacing the customized adjoint source code with CFD solvers. The purpose of this work is to demonstrate using an adjoint solver a method to optimize duct shape that meets multiple design objectives simultaneously. To overcome one of the biggest challenges in the duct design, i.e. the severe packaging constraints, the method here uses geometrically constrained adjoint to ensure that the optimum shape always fits into the user-defined packaging space. In this work, adjoint solver and surface sensitivity calculations are used to develop the optimization method.
Technical Paper

CFD-Simulation and Validation of Cabin Pressure during Door Closing Motions

2019-04-02
2019-01-0815
Under the competitive pressure of automotive industry the customer’s focus is on a vehicle’s quality perception. Side door closing efforts make a considerable share of the overall impression as the doors are the first physical and haptic interface to the customer. Customer’s subjective feeling of vehicle quality demands for detailed analysis of each contributor of door closing efforts. Most contributors come from kinematic influences. Beside the losses due to mechanical subsystems like the checkarm, latch or hinge friction one of the biggest impacts originates from the pressure spike that builds up due to air being pushed into the cabin. Subject of this publication is to discuss the dependencies of closing efforts on cabin pressure and air extraction. It demonstrates an approach to simulate the development of the air pressure during door closing motions and the validation of the simulation method with the “EZ-Slam” measurement device.
Technical Paper

Vane Pump Whining Noise Reduction by Vane Spacing Optimization

2019-04-02
2019-01-0841
A traditional vane type oil pump used inside the engines and the transmissions has equal angles or spacing between the vanes. The equal spacing intensifies pressure fluctuations generated within the pump leading to narrowband pressure spikes at the pump main order and its harmonics. Unequal spacing, however, can relax the severity of the spikes by breaking down the narrowband peaks and distributing them over a larger frequency range. Optimization of the angles within the pump design constraint can maximize the benefit of unequal spacing in reducing the pressure pulsations for a lower risk of engine or transmission whine. The scope of this paper is around the optimization process for vane spacing and different objective functions which can be used to obtain optimized solutions. The simulation results for optimized spacing based on two different objective functions for 7, 8 and 9 vanes are presented. The design constraints for the optimization are discussed as well.
Technical Paper

Effective Suppression of Surge Instabilities in Turbocharger Compression Systems through a Close-Coupled Compressor Inlet Restriction

2018-09-10
2018-01-1714
The current work demonstrates effective suppression of compression system surge instabilities by installing a variable cross-sectional flow area restriction within the inlet duct of a turbocharger centrifugal compressor operating on a bench-top facility. This restriction couples with the compressor, similar to stages in a multi-stage turbomachine, where the effective pressure ratio is the product of those for the restriction and compressor. During experiments at constant compressor rotational speed, the compressor is stable over the negatively sloped portion of the pressure ratio vs. flow rate characteristics, so the restriction is eliminated within this operating region to preserve compressor performance. At low flow rates, the slope of the compressor alone characteristics reaches a positive value, and the unrestricted compression system enters mild surge. Further reduction of flow rate with the unrestricted compressor inlet results in a sudden transition to deep surge instabilities.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses

2018-04-03
2018-01-1239
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens of different thicknesses with FDS joints with clearance hole were made and tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under quasi-static loading conditions. Under quasi-static loading conditions, as the thickness increases, the FDS joint failed from the penetration of the screw head into the upper sheet to the failure of the screw between the two sheets. Optical micrographs also show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under cyclic loading conditions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

A Packaging Layout to Mitigate Crosstalk for SiC Devices

2018-04-03
2018-01-0462
SiC devices have inherent fast switching capabilities due to their superior material properties, and are considered potential candidates to replace Si devices for traction inverters in electrified vehicles in future. However, due to the comparatively low gate threshold voltage, SiC devices may encounter oscillatory false triggering especially during fast switching. This paper analyzed the causes of false triggering, and also studied the impact of a critical parasitic parameter - common source inductance. It is shown that crosstalk is the main cause for the false triggering in the case and some positive common source inductance help to mitigate the crosstalk issue. A packaging layout method is proposed to create the positive common source inductance through layout of control terminals / busbars, and/or the use of control terminal bonded wires at different height.
Technical Paper

Gasoline Particulate Filter Efficiency and Backpressure at Very Low Mileage

2018-04-03
2018-01-1259
The need for gasoline particulate filter (GPF) technology is expected to grow with increasingly tight particle emissions standards being implemented in US, EU, China and elsewhere. Derived from the successful experience with diesel particulate filters (DPF), GPFs adopted the characteristic alternately plugged honeycomb structure that provides a large area of porous cordierite wall for filtering particles with minimal additional backpressure. However, unlike DPFs, continuous soot regeneration in GPFs makes it difficult to grow and sustain the soot cake on the filter wall that gives DPFs their high filtration efficiency. Therefore, filtration performance of low mileage GPFs relies heavily on the porous structure of filter media, which depends on both the substrate and the applied washcoat. In this work, a blank, two fresh washcoated filters and two washcoated filters with 3000 km mileage accumulation were characterized to compare their filtration performance.
Technical Paper

Development of a Thermal Fatigue Test Bench for Cylinder Head Materials

2018-04-03
2018-01-1410
An innovative specimen design and test system for thermal fatigue (TF) analysis is developed to compare the fatigue behavior of different cylinder head materials under realistic cyclic thermal loadings. Finite element analyses were performed to optimize the specimen geometry and thermal cycles. The reduced section of the TF specimen is heated locally by a high frequency induction heater and cooled by compressed air. The mechanical strain is then induced internally by the non-uniform thermal gradient generated within the specimen to closely simulate what valve bridges in cylinder heads experience in real operation. The resulting fatigue life is a function not only of the inherent fatigue resistance of the alloys, but also of other relevant properties such as thermal conductivity, modulus of elasticity, and coefficient of thermal expansion. This test is an essential tool for comparing different alloys for thermal fatigue applications.
Technical Paper

Copper Effect on the Ultrasonic Fatigue Life of A356 Aluminum Alloy Under Variable Humidity Levels

2018-04-03
2018-01-1411
Ultrasonic fatigue tests (testing frequency around 20kHz) have been conducted on A356 aluminum alloys with different copper contents and AS7GU aluminum alloy. Tests were performed in dry air and submerged in water conditions. The effect of copper content was investigated and it was concluded that copper content plays an important role influencing the humidity effect on A356 aluminum alloy ultrasonic fatigue lives. Also, for the same copper content, copper in solute solution or in precipitate have different humidity sensitivities.
X