Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

A Comparison of the Mid-Size Male THOR and Hybrid III ATDs in Vehicle Frontal Crash Tests

2023-06-27
2022-22-0005
In order to evaluate the THOR-50M as a front impact Anthropomorphic Test Device (ATD) for vehicle safety design, the ATD was compared to the H3-50M in matching vehicle crash tests for 20 unique vehicle models from 2 vehicle manufacturers. For the belted driver condition, a total of fifty-four crash tests were investigated in the 56.3 km/h (35 mph) front rigid barrier impact condition. Four more tests were compared for the unbelted driver and right front passenger at 40.2 km/h (25 mph) in the flat frontal and 30-degree right oblique rigid barrier impact conditions. The two ATDs were also evaluated for their ability to predict injury risk by comparing their fleet average injury risk to Crash Investigation Sampling System (CISS) accident data for similar conditions. The differences in seating position and their effect on ATD responses were also investigated.
Technical Paper

Mass Optimization of a Front Floor Reinforcement

2020-01-13
2019-36-0149
Optimization of heavy materials like steel, in order to create a lighter vehicle, it is a major goal among most automakers, since heavy vehicles simply cannot compete with a lightweight model's fuel economy. Thinking this way, this paper shows a case study where the Size Optimization technique is applied to a front floor reinforcement. The reinforcement is used by two different vehicles, a subcompact and a crossover Sport Utility Vehicle (SUV), increasing the problem complexity. The Size Optimization technique is supported by Finite Element Method (FEM) tools. FEM in Computer Aided Engineering (CAE) is a numerical method for solving engineering problems, and its use can help to optimize prototype utilization and physical testing.
Technical Paper

Steering Column/Instrument Panel NVH Analysis in Full Size Pickup Trucks Using MSC/NASTRAN - Part 1

1996-10-01
962190
Recent surveys of customer satisfaction with full size pickup trucks have raised the standards for passenger comfort and refinement of such vehicles. Customers for this type of vehicle demand performance levels for attributes such as NVH, ride, and handling that previously belonged to luxury passenger cars. Along with the increased passenger comfort, full size pickup trucks must retain a tough image and be as durable as the previous generation trucks. The challenge is to design for NVH performance that can match and surpass many well behaved and “good” NVH passenger cars without any compromise in durability performance. One aspect of “good” NVH is a steering wheel which is free from vibration. As part of the development of a new design for a full sized pick up truck, an NVH subjective rating of 8-9 (10 is maximum) was targeted for the design of steering column/ instrument panel assembly.
Technical Paper

Electronic Truck Instrument Panel Displays

1983-11-07
831777
Integrating microcomputer-based components and high technology displays to the heavy-duty truck instrument panel is an evolutionary step in panel development. The application and technology, based on automotive experience, is proven and the initially higher cost of more sophisticated instrumentation will be offset by capabilities offering a return on investment not possible even with the most modern electromechanical instrumentation.
Technical Paper

THE INTERSTATE HIGHWAY SYSTEM SUPER TRANSPORT TRUCK

1965-02-01
650160
This paper describes the design and build of an experimental super transport truck for high-speed, long distance freight hauling on the interstate highway system of the 1970's. The tractor, powered by a 600-hp gas turbine engine, pulls two 40-foot tandem axle trailers at a G.C.W. of 170,000 lbs. Details of the turbine engine development are covered in SAE paper, No. 991B. One of the features of the super transport truck is the cab, which is designed for long-distance, non-stop, two-man operation. It is provided with sleeping accommodations, washroom conveniences, food facilities, and a complete heating and air-conditioning system. The 13-foot high cab roof is flush with the top of the trailers, providing a substantial aerodynamic advantage. Other features and components of the truck are described, and observations made during the 5500-mile national tour are discussed.
X