Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

CFD-Simulation and Validation of Cabin Pressure during Door Closing Motions

2019-04-02
2019-01-0815
Under the competitive pressure of automotive industry the customer’s focus is on a vehicle’s quality perception. Side door closing efforts make a considerable share of the overall impression as the doors are the first physical and haptic interface to the customer. Customer’s subjective feeling of vehicle quality demands for detailed analysis of each contributor of door closing efforts. Most contributors come from kinematic influences. Beside the losses due to mechanical subsystems like the checkarm, latch or hinge friction one of the biggest impacts originates from the pressure spike that builds up due to air being pushed into the cabin. Subject of this publication is to discuss the dependencies of closing efforts on cabin pressure and air extraction. It demonstrates an approach to simulate the development of the air pressure during door closing motions and the validation of the simulation method with the “EZ-Slam” measurement device.
Technical Paper

Duct Shape Optimization Using Multi-Objective and Geometrically Constrained Adjoint Solver

2019-04-02
2019-01-0823
In the recent years, adjoint optimization has gained popularity in the automotive industry with its growing applications. Since its inclusion in the mainstream commercial CFD solvers and its continuously added capabilities over the years, its productive usage became readily available to many engineers who were previously limited to interfacing the customized adjoint source code with CFD solvers. The purpose of this work is to demonstrate using an adjoint solver a method to optimize duct shape that meets multiple design objectives simultaneously. To overcome one of the biggest challenges in the duct design, i.e. the severe packaging constraints, the method here uses geometrically constrained adjoint to ensure that the optimum shape always fits into the user-defined packaging space. In this work, adjoint solver and surface sensitivity calculations are used to develop the optimization method.
Technical Paper

FRED II Quasistatic Seat Testing Rearward: An Improved Method Based on the SAE H-point Manikin

2019-04-02
2019-01-1032
Various methods have been used to load a seat in the rear direction, including FMVSS 207, assorted body blocks and QST (quasistatic seat test). However, each method lacks some critical aspect of occupant loading of the seat or is too complex for routine development work. A new method is presented to determine the strength and energy transfer of a seat to an occupant in rear impacts that reflects how an occupant interacts with the seat in a rear impact. A metal-cast H-point manikin, called FRED II, was modified to support a loading bar and was pulled rearward into the seatback by a hydraulic ram. The force and displacement of the loading and the inboard and outboard seatback angle were measured. The response of the seat was recorded by video. The moment about the recliner pivot at peak force was determined by aligning the center of the recliner in side views of the seat position initially and at peak load.
Technical Paper

Seat Performance and Occupant Moving Out of the Shoulder Belt in ABTS (All-Belts-to-Seat) in Rear Impacts

2019-04-02
2019-01-1031
This study examined occupant and seat responses with ABTS (all-belts-to-seat) in rear end collisions. Some have claimed improved ABTS seat performance and retention in rear impacts than conventional seats. ABTS seats tend to have higher ultimate yield strengths than conventional yielding seats. Most ABTS seats have asymmetric seatback stiffness due to the need for additional structure on one side of the seat to support shoulder belt loads. Many designs use a single-side recliner and single stanchion that anchors the D-ring. This asymmetry results in twisting of the seatback in severe rear impacts. Seatback twist can allow the occupant to move away from the shoulder belt. Rearward pull tests on ABTS seats also demonstrates seatback twisting and in some cases large drops in load during the test. The added strength and stiffness of ABTS seats lead to designs that are vulnerable to sudden force drops from separated parts.
Technical Paper

Copper Effect on the Ultrasonic Fatigue Life of A356 Aluminum Alloy Under Variable Humidity Levels

2018-04-03
2018-01-1411
Ultrasonic fatigue tests (testing frequency around 20kHz) have been conducted on A356 aluminum alloys with different copper contents and AS7GU aluminum alloy. Tests were performed in dry air and submerged in water conditions. The effect of copper content was investigated and it was concluded that copper content plays an important role influencing the humidity effect on A356 aluminum alloy ultrasonic fatigue lives. Also, for the same copper content, copper in solute solution or in precipitate have different humidity sensitivities.
Technical Paper

Virtual Temperature Controlled Seat Performance Test

2018-04-03
2018-01-1317
The demand for seating comfort is growing - in cars as well as trucks and other commercial vehicles. This is expected as the seat is the largest surface area of the vehicle that is in contact with the occupant. While it is predominantly luxury cars that have been equipped with climate controlled seats, there is now a clear trend toward this feature becoming available in mid-range and compact cars. The main purpose of climate controlled seats is to create an agreeable microclimate that keeps the driver comfortable. It also reduces the “stickiness” feeling which is reported by perspiring occupants on leather-covered seats. As part of the seat design process, a physical test is performed to record and evaluate the life cycle and the performance at ambient and extreme temperatures for the climate controlled seats as well as their components. The test calls for occupied and unoccupied seats at several ambient temperatures.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Journal Article

Aerodynamic Investigation of Cooling Drag of a Production Pickup Truck Part 1: Test Results

2018-04-03
2018-01-0740
The airflow that enters the front grille of a ground vehicle for the purpose of component cooling has a significant effect on aerodynamic drag. This drag component is commonly referred to as cooling drag, which denotes the difference in drag measured between open grille and closed grille conditions. When the front grille is closed, the airflow that would have entered the front grille is redirected around the body. This airflow is commonly referred to as cooling interference airflow. Consequently, cooling interference airflow can lead to differences in vehicle component drag; this component of cooling drag is known as cooling interference drag. One mechanism that has been commonly utilized to directly influence the cooling drag, by reducing the engine airflow, is active grille shutters (AGS). For certain driving conditions, the AGS system can restrict airflow from passing through the heat exchangers, which significantly reduces cooling drag.
Technical Paper

Accelerated Corrosion Testing of Automotive Evaporators and Condensers

2018-04-03
2018-01-0062
There is an ongoing effort in the industry to develop an accelerated corrosion test for automotive heat exchangers. This has become even more important as automakers are focusing on corrosion durability of 15 years in the field versus current target of 10 years. To this end an acid immersion test was developed and reported in a previous paper for condensers (1). This paper extends those results to evaporators and establishes the efficacy of the test using these results and those reported in the literature. The paper also discusses variability in corrosion test results as observed in tests such as ASTM G85:A3 Acidified Synthetic Sea Water Test (SWAAT), and its relation to field durability.
Technical Paper

A Packaging Layout to Mitigate Crosstalk for SiC Devices

2018-04-03
2018-01-0462
SiC devices have inherent fast switching capabilities due to their superior material properties, and are considered potential candidates to replace Si devices for traction inverters in electrified vehicles in future. However, due to the comparatively low gate threshold voltage, SiC devices may encounter oscillatory false triggering especially during fast switching. This paper analyzed the causes of false triggering, and also studied the impact of a critical parasitic parameter - common source inductance. It is shown that crosstalk is the main cause for the false triggering in the case and some positive common source inductance help to mitigate the crosstalk issue. A packaging layout method is proposed to create the positive common source inductance through layout of control terminals / busbars, and/or the use of control terminal bonded wires at different height.
Technical Paper

Development of a Simulation Tool for High Capacity Metal Foam Heat Exchanger with Phase Change Material

2018-04-03
2018-01-0783
Metal foam with their high porosity and heat storage capacity can be combined with phase change materials to be a powerful heat storage device. Numerical simulations of metal foam behavior can be challenging due to their complex geometric patterns necessitating high mesh requirements. Furthermore, simulations of the inner workings of a metal foam heat exchanger comprising of a large number of individual metal foam canisters can be impossible. The objective of the current work is to develop a computational model using a proprietary CFD tool Simerics-MP/Simerics-MP+® to simulate the workings of a metal foam heat exchanger with phase change element. A heat transfer coefficient capturing this heat transfer between wax and metal is used to formulate the “simplified” mixture model. The versatility of the proposed model is in the universality of its application to any shape or structure of metal foam. The computational model developed is tested to replicate the results of the 3D simulation.
Technical Paper

The Effect of Vehicle Noise on Automatic Speech Recognition Systems

2017-06-05
2017-01-1864
The performance of a vehicle’s Automatic Speech Recognition (ASR) system is dependent on the signal to noise ratio (SNR) in the cabin at the time a user voices their command. HVAC noise and environmental noise in particular (like road and wind noise), provide high amplitudes of broadband frequency content that lower the SNR within the vehicle cabin, and work to mask the user’s speech. Managing this noise is a vital key to building a vehicle that meets the customer’s expectations for ASR performance. However, a speech recognition engineer is not likely to be the same person responsible for designing the tires, suspension, air ducts and vents, sound package and exterior body shape that define the amount of noise present in the cabin. If objective relationships are drawn between the vehicle level performance of the ASR system, and the vehicle or system level performance of the individual noise, vibration and harshness (NVH) attributes, a partnership between the groups is brokered.
Technical Paper

The Effect of HVAC Buffeting on Automatic Speech Recognition Systems

2017-06-05
2017-01-1781
The design and operation of a vehicle’s heating, ventilation, and air conditioning (HVAC) system has great impact on the performance of the vehicle’s Automatic Speech Recognition (ASR) and Hands-Free Communication (HFC) system. HVAC noise provides high amplitudes of broadband frequency content that affects the signal to noise ratio (SNR) within the vehicle cabin, and works to mask the user’s speech. But what’s less obvious is that when the airflow from the panel vents or defroster openings can be directed toward the vehicle microphone, a mechanical “buffeting” phenomenon occurs on the microphone’s diaphragm that distresses the ASR system beyond its ability to interpret the user’s voice. The airflow velocity can be strong enough that a simple windscreen on the microphone is not enough to eliminate the problem. Minimizing this buffeting effect is a vital key to building a vehicle that meets the customer’s expectations for ASR and HFC performance.
Technical Paper

Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

2017-03-28
2017-01-0183
It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
Technical Paper

Evolution of Engine Air Induction System Hydrocarbon Traps

2017-03-28
2017-01-1014
Engine air induction systems hydrocarbon trap (HC trap) designs to limit evaporative fuel emissions, have evolved over time. This paper discusses a range of HC traps that have evolved in engine air induction systems. (AIS) The early zeolite flow through HC trap utilized an exhaust catalyst technology internal stainless steel furnace brazed substrate coated with zeolite media. This HC trap was installed in the AIS clean air tube. This design was heavy, complicated, and expensive but met the urgency of the implementation of the new evaporative emissions regulation. The latest Ford Motor Company HC trap is a simple plastic tray containing activated carbon with breathable non-woven polyester cover. This design has been made common across multiple vehicle lines with planned production annual volume in the millions. The cost of the latest HC trap bypass design is approximately 5% of the original stainless steel zeolite flow through HC trap.
Technical Paper

Fan Shroud Design for Low Speed Damageability

2017-03-28
2017-01-1300
An engine cooling system in an automotive vehicle comprises of heat exchangers such as a radiator, charge air cooler and oil coolers along with engine cooling fan. Typical automotive engine-cooling fan assembly includes an electric motor mounted on a shroud that encloses the radiator core. One of main drivers of fan shroud design is Noise, Vibration, and Harshness (NVH) requirements without compromising the main function of airflow for cooling requirements. In addition, there is also a minimum stiffness requirement of fan shroud which is often overlooked in arriving at optimal design of it. Low Speed Damageability (LSD) assessment of an automotive vehicle is about minimizing the cost of repair of vehicle damages in low speed crashes. In low speed accidents, these fan motors are subjected to sudden decelerations which cause fan motors to swing forward thereby damaging the radiator core. So designing fan shroud for low speed damageability is of importance today.
Technical Paper

From the Napkin to Autocode, a Body Control Module Software Development Journey

2017-03-28
2017-01-1622
The Body Control Module (BCM) is a very large integration site for vehicle features and functions (e.g., Locking, Alarms, interior lighting, exterior lighting, etc…). Every few years the demand to add more feature/functions and integrate more vehicle content increases. The expectation of the 2013 MY (model year) BCM, was to double the feature content and use it globally. The growth in 3 years of feature/function content was huge number that grew from 150 to over 300. This posed a major challenge to the software development team based on the methods and process that were deployed at the time. This paper cites the cultural and technology changes that were overcome when Ford Motor Company partnered with Tata Consultancy Services to help manage and define this new software engineering development methodology. The process of getting from a vague description of a new body module feature to a saleable product, presents several very challenging problems.
Technical Paper

Full Scale Burn Test of Four Aluminum Body Ford F-150’s

2017-03-28
2017-01-1355
Four full scale burn tests on aluminum body Ford F-150’s were conducted with four unique origins. The purpose of these burn tests was to determine if the origin of the fire could be accurately identified after the vehicle fires progressed to near complete burn (with near absence of the aluminum body panels). The points of origin for the four burn tests were: 1) Engine Compartment - driver’s side front of engine compartment, 2) Passenger Compartment - Instrument panel, driver’s side near the headlamp switch, 3) Passenger Compartment - passenger side rear seat, 4) Outside of Vehicle - passenger side front tire. Photographic, video, and temperature data was recorded to document the burn process from initiation to extinguishment. Post-fire analysis was conducted in an attempt to determine the origin of the fire based solely on the burn damage.
Technical Paper

Complete Seat Load Deflection Testing Methodologies

2017-03-28
2017-01-1391
Load deflection testing is one type of test that can be used to understand the comfort performance of a complete trimmed automotive seat. This type of testing can be conducted on different areas of the seat and is most commonly used on the seatback, the seat cushion and the head restraint. Load deflection data can be correlated to a customer’s perception of the seat, providing valuable insight for the design and development team. There are several variables that influence the results obtained from this type of testing. These can include but are not limited to: seat structure design, suspension system, component properties, seat materials, seat geometry, and test set-up. Set-up of the seat for physical testing plays a critical role in the final results. This paper looks at the relationship of the load deflection data results on front driver vehicle seatbacks in a supported and unsupported test set-up condition.
X