Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Benchmarking Methods for Electric Vehicle Drive Units

2024-04-09
2024-01-2270
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a development project was started to study various test methods to benchmark Electric Drive Units (EDUs) consisting of an electric motor, inverter and a speed-reduction gearset. Several test methods were identified for consideration, including both in-vehicle testing of the complete EDU and stand-alone testing of the EDU and its subcomponents after removal from the vehicle. In all test methods explored, sweeps of speed and torque test points were conducted while collecting key EDU data required to determine efficiency, including motor torque and speed, direct current (DC) battery voltage and current into the inverter, and three-phase alternating current (AC) phase voltages and currents out of the inverter and into the electric motor.
Technical Paper

An Experimentally Based Statistical Model for Predicting Motorcycle Shift Patterns

2020-04-14
2020-01-1046
Emissions from manual transmission motorcycles have been shown to be dependent upon transmission shift patterns. Presently, when undergoing an emission test for an Environmental Protection Agency (EPA) certification a manufacturer can designate their own shift points during the cycle or utilize an EPA prescribed shift pattern which uses basic up or down shifts at specific speeds regardless of the type of motorcycle, 40 CFR 86.528-78(h). In order to predict the real-life emissions from motorcycles, a comparative real-life shift pattern has been developed which can then be used to evaluate the suitability of the manufacturer’s shift schedule. To that end, a model that predicts shift points for motorcycles has been created. This model is based on the actual operation of different motorcycles by real life operators in a combined city and highway setting.
Journal Article

Modeling and Validation of 48V Mild Hybrid Lithium-Ion Battery Pack

2018-04-03
2018-01-0433
As part of the midterm evaluation of the 2022-2025 Light-Duty Vehicle Greenhouse Gas (GHG) Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of 48V mild hybrid electric vehicle (MHEV) technology for reducing CO2 emissions from light-duty vehicles. Simulation and modeling of this technology requires a suitable model of the battery. This article presents the development and validation of a 48V lithium-ion battery model that will be integrated into EPA’s Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model and that can also be used within Gamma Technologies, LLC (Westmont, IL) GT-DRIVE™ vehicle simulations. The battery model is a standard equivalent circuit model with the two-time constant resistance-capacitance (RC) blocks.
Journal Article

Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines

2018-04-03
2018-01-0319
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty (LD) automotive technologies to support the setting of appropriate national greenhouse gas (GHG) standards and to evaluate the impact of new technologies on in-use emissions, a 2016 Honda Civic with a 4-cylinder 1.5-liter L15B7 turbocharged engine and continuously variable transmission (CVT) was benchmarked. The test method involved installing the engine and its CVT in an engine-dynamometer test cell with the engine wiring harness tethered to its vehicle parked outside the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, and onboard diagnostics (OBD)/Controller Area Network (CAN) bus data were recorded.
Technical Paper

Modeling and Controls Development of 48 V Mild Hybrid Electric Vehicles

2018-04-03
2018-01-0413
The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The ALPHA desktop application was developed using MATLAB/Simulink. The ALPHA tool was used to evaluate technology effectiveness and off-cycle technologies such as air-conditioning, electrical load reduction technology and road load reduction technologies of conventional, non-hybrid vehicles for the Midterm Evaluation of the 2017-2025 LD GHG rule by the U.S. Environmental Protection Agency (EPA) Office of Transportation and Air Quality (OTAQ).
Technical Paper

Wind Tunnel Evaluation of Potential Aerodynamic Drag Reductions from Trailer Aerodynamic Component Combinations

2015-09-29
2015-01-2884
The use of devices to reduce aerodynamic drag on large trailers and save fuel in long-haul, over-the-road freight operations has spurred innovation and prompted some trucking fleets to use them in combinations to achieve even greater gains in fuel-efficiency. This paper examines aerodynamic performance and potential drag reduction benefits of using trailer aerodynamic components in combinations based upon wind tunnel test data. Representations of SmartWay-verified trailer aerodynamic components were tested on a one-eighth scale model of a class 8 sleeper tractor and a fifty three foot, van trailer model. The open-jet wind tunnel employed a rolling floor to reduce floor boundary layer interference. The drag impacts of aerodynamic packages are evaluated for both van and refrigerated trailers. Additionally, the interactions between individual aerodynamic devices is investigated.
Journal Article

Development of Greenhouse Gas Emissions Model (GEM) for Heavy- and Medium-Duty Vehicle Compliance

2015-09-29
2015-01-2771
In designing a regulatory vehicle simulation program for determining greenhouse gas (GHG) emissions and fuel consumption, it is necessary to estimate the performance of technologies, verify compliance with the regulatory standards, and estimate the overall benefits of the program. The agencies (EPA/NHTSA) developed the Greenhouse Gas Emissions Model (GEM) to serve these purposes. GEM is currently being used to certify the fuel consumption and CO2 emissions of the Phase 1 rulemaking for all heavy-duty vehicles in the United States except pickups and vans, which require a chassis dynamometer test for certification. While the version of the GEM used in Phase 1 contains most of the technical and mathematical features needed to run a vehicle simulation, the model lacks sophistication. For example, Phase 1 GEM only models manual transmissions and it does not include engine torque interruption during gear shifting.
Journal Article

Disassembly of Small Engine Catalytic Converters and Analysis of Washcoat Material for Platinum Group Metals by X-Ray Fluorescence Spectrometry

2014-06-02
2014-01-9078
The United States Environmental Protection Agency (U.S. EPA) National Enforcement Investigations Center (NEIC) has developed a test method for the analysis of washcoat material in small engine catalytic converters. Each small engine catalytic converter contains a metallic monolith. Each metallic monolith is removed from its outer casing, manually disassembled, and then separated into washcoat and substrate. The washcoat material is analyzed for platinum group metals (PGMs) using X-ray fluorescence (XRF) spectrometry. Results from the XRF analysis are used to calculate PGM ratios in the washcoat. During monolith disassembly, care is taken to minimize loss of washcoat or substrate, but some material is inevitably lost. The recovered washcoat mass does not necessarily equal the quantity of washcoat that was present in the intact catalytic converter.
Video

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-06-18
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles ?with and without? the technologies being evaluated.
Journal Article

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-04-16
2012-01-1343
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles “with and without” the technologies being evaluated.
Technical Paper

Impact of Real-World Drive Cycles on PHEV Battery Requirements

2009-04-20
2009-01-1383
Plug-in hybrid electric vehicles (PHEVs) have the ability to significantly reduce petroleum consumption. Argonne National Laboratory (Argonne), working with the FreedomCAR and Fuels Partnership, helped define the battery requirements for PHEVs. Previous studies demonstrated the impact of the vehicle's characteristics, such as its class, mass, or electrical accessories, on the requirements. However, questions on the impact of drive cycles remain outstanding. In this paper, we evaluate the consequences of sizing the electrical machine and the battery to follow standard drive cycles, such as the urban dynamometer driving schedule (UDDS), as well as real-world drive cycles in electric vehicle (EV) mode. The requirements are defined for several driving conditions (e.g., urban, highway) and types of driving behavior (e.g., smooth, aggressive).
Technical Paper

Characterization of the Fluid Deaeration Device for a Hydraulic Hybrid Vehicle System

2008-04-14
2008-01-0308
The attractiveness of the hydraulic hybrid concept stems from the high power density and efficiency of the pump/motors and the accumulator. This is particularly advantageous in applications to heavy vehicles, as high mass translates into high rates of energy flows through the system. Using dry case hydraulic pumps further improves the energy conversion in the system, as they have 1-4% better efficiency than traditional wet-case pumps. However, evacuation of fluid from the case introduces air bubbles and it becomes imperative to address the deaeration problems. This research develops a bubble elimination efficiency testing apparatus (BEETA) to establish quantitative results characterizing bubble removal from hydraulic fluid in a cyclone deaeration device. The BEETA system mixes the oil and air according to predetermined ratio, passes the mixture through a cyclone deaeration device, and then measures the concentration of air in the exiting fluid.
Technical Paper

Evaluating Real-World Fuel Economy on Heavy Duty Vehicles using a Portable Emissions Measurement System

2006-10-31
2006-01-3543
Current SAE practices for evaluating potential improvements in fuel economy on heavy-duty vehicles rely on gravimetric measurements of fuel tanks. However, the recent evolution of portable emissions measurement systems (PEMS) offers an alternative means of evaluating real-world fuel economy that may be faster and more cost effective. This paper provides a direct comparison of these two methods based on a recent EPA study conducted at Southwest Research Institute. More than 228 on-road tests were performed on two pairs of class 8 tractor-trailers according to SAE test procedure J1321 in an assessment of various chassis components designed to reduce drag losses on the vehicle. During these tests, SEMTECH-D™ portable emissions measurement systems from Sensor's, Incorporated were operating in each of the vehicles to evaluate emissions and to provide a redundant measure of fuel economy.
Technical Paper

Fuel Economy Improvements and NOx Reduction by Reduction of Parasitic Losses: Effect of Engine Design

2006-10-31
2006-01-3474
Reducing aerodynamic drag and tire rolling resistance in trucks using cooled EGR engines meeting EPA 2004 emissions standards has been observed to result in increases in fuel economy and decreases in NOx emissions. We report here on tests conducted using vehicles equipped a non-EGR engine meeting EPA 2004 emission standards and an electronically-controlled engine meeting EPA 1998 emissions standards. The effects of trailer fairings and single-wide tires on fuel economy and NOx emissions were tested using SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and by the gravimetric method specified by test procedure J1321. Fuel consumption decreased and fuel economy increased by a maximum of about 10 percent, and NOx emissions decreased by a maximum of 20 percent relative to baseline.
Technical Paper

Effect of Single Wide Tires and Trailer Aerodynamics on Fuel Economy and NOx Emissions of Class 8 Line-Haul Tractor-Trailers

2005-11-01
2005-01-3551
We hypothesize that components designed to improve fuel economy by reducing power requirements should also result in a decrease in emissions of oxides of nitrogen (NOx). Fuel economy and NOx emissions of a pair of class 8 tractor-trailers were measured on a test track to evaluate the effects of single wide tires and trailer aerodynamic devices. Fuel economy was measured using a modified version of SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and correlated to fuel meter measurements. Tests were conducted using drive cycles simulating highway operations at 55 mph and 65 mph and suburban stop-and-go traffic. The tests showed a negative correlation (significant at p < 0.05) between fuel economy and NOx emissions. Single wide tires and trailer aerodynamic devices resulted in increased fuel economy and decreased NOx emissions relative to the baseline tests.
Technical Paper

On-road Testing and Characterization of Fuel Economy of Light-Duty Vehicles

2005-04-11
2005-01-0677
The potential discrepancy between the fuel economy shown on new vehicle labels and that achieved by consumers has been receiving increased attention of late. EPA has not modified its labeling procedures since 1985. It is likely possible that driving patterns in the U.S. have changed since that time. One possible modification to the labeling procedures is to incorporate the fuel economy measured over the emission certification tests not currently used in deriving the fuel economy label (i.e., the US06 high speed and aggressive driving test, the SC03 air conditioning test and the cold temperature test). This paper focuses on the US06 cycle and the possible incorporation of aggressive driving into the fuel economy label. As part of its development of the successor to the MOBILE emissions model, the Motor Vehicle Emission Modeling System (MOVES), EPA has developed a physically-based model of emissions and fuel consumption which accounts for different driving patterns.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

42 Catalytic Reduction of Marine Sterndrive Engine Emissions

2002-10-29
2002-32-1811
A 2001 General Motors 4.3 liter V-6 marine engine was baseline emissions tested and then equipped with catalysts. Emission reduction effects of exhaust gas recirculation (EGR) were also explored. Because of a U.S. Coast Guard requirement that inboard engine surface temperatures be kept below 200°F, the engine's exhaust system, including the catalysts, was water-cooled. Engine emissions were measured using the ISO-8178-E4 5-mode steady-state test for recreational marine engines. In baseline configuration, the engine produced 16.6 g HC+NOx/kW-hr, and 111 g CO/kW-hr. In closed-loop control with catalysts, HC+NOx emissions were reduced by 75 percent to 4.1 g/kW-hr, and CO emissions were reduced by 36 percent to 70 g/kW-hr of CO. The catalyzed engine was then installed in a Sea Ray 190 boat, and tested for water reversion on both fresh and salt water using National Marine Manufacturers Association procedures.
Technical Paper

Nonroad Engine Activity Analysis and Transient Cycle Generation

1999-09-14
1999-01-2800
The United States Environmental Protection Agency (EPA) has initiated Phase I of a regulatory program to control exhaust emissions of nonroad diesel engines over 37 kW. Central to any emissions regulation is the test procedure, which must include an appropriate test cycle. Based on actual in-use speed and estimated torque data collected from an agricultural tractor, a backhoe-loader, and a crawler tractor, three duty cycles were developed. Using an iterative process, comparison of chi-square statistical data was used to identify representative microtrips, segments of engine operation gathered during performance of selected activities. Representative microtrips for specific activities for a particular nonroad application were “strung” together to make up a test cycle. Before accepting the test cycle, data for the cycle was compared to statistical data used to characterize the raw data in an effort to validate that the cycle was representative of the raw data.
Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
X