Refine Your Search

Topic

Search Results

Video

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-06-18
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles ?with and without? the technologies being evaluated.
Journal Article

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-04-16
2012-01-1343
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles “with and without” the technologies being evaluated.
Technical Paper

Evaluating Real-World Fuel Economy on Heavy Duty Vehicles using a Portable Emissions Measurement System

2006-10-31
2006-01-3543
Current SAE practices for evaluating potential improvements in fuel economy on heavy-duty vehicles rely on gravimetric measurements of fuel tanks. However, the recent evolution of portable emissions measurement systems (PEMS) offers an alternative means of evaluating real-world fuel economy that may be faster and more cost effective. This paper provides a direct comparison of these two methods based on a recent EPA study conducted at Southwest Research Institute. More than 228 on-road tests were performed on two pairs of class 8 tractor-trailers according to SAE test procedure J1321 in an assessment of various chassis components designed to reduce drag losses on the vehicle. During these tests, SEMTECH-D™ portable emissions measurement systems from Sensor's, Incorporated were operating in each of the vehicles to evaluate emissions and to provide a redundant measure of fuel economy.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Caution and Warning in the Cockpit Dashboard

2004-07-19
2004-01-2587
Today’s motor vehicles are approaching the complexity of aircraft and spacecraft, but have a slightly different set of variables for the human operator; the driver. Gravitational forces rarely vary significantly for the vehicle driver; the ability to alter the trajectory usually exists; and refueling opportunities are seldom mission-limiting. Yet the driver is performing in an abnormal, dynamic environment with uncontrolled events and potential life-threatening outcomes just like the aviator or astronaut. Defining and managing ‘acceptable risk’ in the high performance environments of space and aviation continues to challenge today’s engineers and human factors researchers. In the automotive industry, engineers have traditionally approached this challenge by insuring the vehicle design is robust enough to accommodate the full range of potential operators.
Technical Paper

42 Catalytic Reduction of Marine Sterndrive Engine Emissions

2002-10-29
2002-32-1811
A 2001 General Motors 4.3 liter V-6 marine engine was baseline emissions tested and then equipped with catalysts. Emission reduction effects of exhaust gas recirculation (EGR) were also explored. Because of a U.S. Coast Guard requirement that inboard engine surface temperatures be kept below 200°F, the engine's exhaust system, including the catalysts, was water-cooled. Engine emissions were measured using the ISO-8178-E4 5-mode steady-state test for recreational marine engines. In baseline configuration, the engine produced 16.6 g HC+NOx/kW-hr, and 111 g CO/kW-hr. In closed-loop control with catalysts, HC+NOx emissions were reduced by 75 percent to 4.1 g/kW-hr, and CO emissions were reduced by 36 percent to 70 g/kW-hr of CO. The catalyzed engine was then installed in a Sea Ray 190 boat, and tested for water reversion on both fresh and salt water using National Marine Manufacturers Association procedures.
Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
Technical Paper

Start Catalyst Systems Employing Heated Catalyst Technology for Control of Emissions from Methanol-Fueled Vehicles

1993-03-01
930382
EPA published the first results from evaluations of electrically heated catalyst (EHC) technology for light-duty automotive applications. Since then, a number of automakers, suppliers, and government agencies have published results from their heated catalyst development and evaluation programs. EPA has evaluated a number of start catalyst systems incorporating an EHC start catalyst followed by a larger, conventional main catalyst. These systems have proven very effective at reducing cold start related emissions from methanol vehicles at low mileage. This paper compares the results from several EHC + main catalyst evaluations conducted by EPA.
Technical Paper

Effect of Engine Condition on FTP Emissions and In-Use Repairability

1992-02-01
920822
Twenty in-use vehicles that had failed the I/M test in the State of Michigan were inspected for engine mechanical condition as well as the state of the emission control system. Mass emission tests were conducted before and after repairs to the emission control system. The internal engine condition (i.e., high or low levels of cylinder leakage, or compression difference) showed little effect on the ability of the repaired vehicles to achieve moderate mass emission levels. Nine of the twenty vehicles were recruited after three years, and with the exception of tampering, the original emission control system repairs proved to be durable.
Technical Paper

Operating Characteristics of Zirconia Galvanic Cells (Lambda Sensors) in Automotive Closed-Loop Emission Control Systems

1992-02-01
920289
Simple tests were performed to investigate the operating characteristics of zirconia galvanic cells (lambda sensors) in automotive closed loop “three-way” emission control systems. Commercially available cells were exposed to typical gaseous components of exhaust gas mixtures. The voltages generated by the cells were at their maximum values when hydrogen, and, in some instances, carbon monoxide, was available for reaction with atmospheric oxygen that migrated through the cells' ceramic thimbles in ionic form. This dependence of galvanic activity on the availability of these particular reducing agents indicated that the cells were voltaic devices which operated as oxidation/reduction reaction cells, rather than simple oxygen concentration cells.
Technical Paper

Detection of Catalyst Failure On-Vehicle Using the Dual Oxygen Sensor Method

1991-02-01
910561
On-vehicle proof-of-concept testing was conducted to evaluate the ability of the dual oxygen sensor catalyst evaluation method to identify serious losses in catalyst efficiency under actual vehicle operating conditions. The dual oxygen sensor method, which utilizes a comparison between an upstream oxygen sensor and an oxygen sensor placed downstream of the catalyst, was initially studied by the Environmental Protection Agency (EPA) under steady-state operating conditions on an engine dynamometer and reported in Clemmens, et al. (1).* At the time that study was released, questions were raised as to whether the technological concepts developed on a test fixture could be transferred to a vehicle operating under normal transient conditions.
Technical Paper

Resistive Materials Applied to Quick Light-off Catalysts

1989-02-01
890799
The application of resistive materials as part of an exhaust emission control system is presented and discussed. The importance of cold start emissions is emphasized, and results are presented from experiments conducted with two different conductive materials. Most of the testing was conducted using methanol as the fuel, although some tests were run using gasoline-fueled vehicles.
Technical Paper

Catalysts for Methanol Vehicles

1987-11-01
872052
A Methanol catalyst test program has been conducted in two phases. The purpose of Phase I was to determine whether a base metal or lightly-loaded noble metal catalyst could reduce Methanol engine exhaust emissions with an efficiency comparable to conventional gasoline engine catalytic converters. The goal of Phase II was the reduction of aldehyde and unburned fuel emissions to very low levels by the use of noble metal catalysts with catalyst loadings higher than those in Phase I. Catalysts tested in Phase I were evaluated as three-way converters as well as under simulated oxidation catalyst conditions. Phase II catalysts were tested as three-way converters only. For Phase I, the most consistently efficient catalysts over the range of pollutants measured were platinum/rhodium configurations. None of the catalysts tested in Phase I were able to meet a NOx level of 1 gram per mile when operated in the oxidation mode.
Technical Paper

A Study of the Potential Impact of Some Unregulated Motor Vehicle Emissions

1983-06-06
830987
Studies of emissions from vehicles equipped with catalysts have shown that some unregulated emissions can increase when a catalyst is used. One example of this is sulfuric acid, which has been studied extensively. Other unregulated emissions include ammonia and hydrogen cyanide. In a number of studies, these unregulated pollutant emissions have been measured from light-duty vehicles and heavy-duty engines. These emission levels were used in air quality dispersion models to predict the resultant air quality levels. The ambient concentrations predicted for each pollutant were then compared to suggested concentrations at which adverse health effects may be found to determine if additional monitoring or control would be indicated for these pollutants. It was determined that mobile source emissions of sulfuric acid, hydrogen cyanide, and ammonia do not in general result in ambient levels of concern for the air quality situations studied.
Technical Paper

Light Duty Automotive Fuel Economy… Trends thru 1983

1983-02-01
830544
This, the eleventh in a series of Papers on EPA fuel economy trends, emphasizes the current Model Year (1983) as usual, but also gives increased emphasis to trends in vehicle technology, including catalyst and transmission subclasses. Final “CAFE”* production volumes and MPG figures have been used to update the data bases through the 1980 Model Year, and an analytic method used in the past to allocate year-to-year fleet MPG changes to specific causes, such as weight mix shifts, has been reinstituted. Conclusions are presented on the relation between fuel economy and emission standards, catalyst types, and transmission types.
Technical Paper

Light Duty Automotive Fuel Economy … Trends through 1982

1982-02-01
820300
EPA Fuel economy figures are presented for model year 1982 cars and light duty trucks. Comparisons with the MPG figures of prior years are included. Sales penetrations of various vehicle, engine, and emission control design features are given, and domestic cars' MPG characteristics are compared to that of imports', gasoline vehicle MPG is compared to Diesel MPG, and 49-states MPG is compared to California MPG. Usage of newer vehicle technologies is continuing to increase, leading to continued growth in fuel economy capability in spite of stringent emission standards.
Technical Paper

Light Duty Automotive Fuel Economy …Trends through 1981

1981-02-01
810386
EPA new-model fuel economy figures are presented for passenger vehicles and light duty trucks (those with GVW ratings up to 8500 lbs). The 1981 models are emphasized, with some comparisons to prior years included. Reader familiarity with the EPA tests, data bases, and analytical methods is assumed. Principal two-way analyses include comparisons of domestic vs. import, gasoline vs. Diesel, and Federal (49-state) vs. California vehicles. Sales fractions for a number of vehicle and engine emission control design features are included. The principal finding is that increased use of newer vehicle and emission control technologies in 1981 has accompanied significant fuel economy gains in spite of the tougher 1981 emission standards.
Technical Paper

Exhaust Emissions from In-Use Passenger Cars Equipped with Three-Way Catalysts

1980-06-01
800823
This paper presents the results of an exhaust emission testing program conducted by the U.S. Environmental Protection Agency. The test vehicles were 1978–1980 passenger cars of various makes and models. Each of the 686 vehicles tested was equipped with a three-way catalyst system and was certified to California standards. The purpose of the program was to gather information on current systems in customer use for projections on the ability of the three-way system to meet emission standards of the future. The results indicate that these systems are capable of achieving low emission levels although high levels are also possible due to defects, deterioration, or tampering.
Technical Paper

Evaluation of Emission Control Technology Approaches for Heavy-Duty Gasoline Engines

1978-02-01
780646
This paper summarizes a laboratory effort toward reducing nine-mode cycle composite emissions and fuel consumption in a heavy-duty gasoline engine, while retaining current durability performance. Evaluations involved standard carburetors, a Dresserator inductor, a Bendix electronic fuel injection system, exhaust manifold thermal reactors, and exhaust gas recirculation, along with other components and engine operating parameters. A system consisting of electronic fuel injection, thermal reactors with air injection and exhaust gas recirculation, was assembled which met specified project goals. An oxidation catalyst was included as an add-on during the service accumulation demonstration. In addition, the driveability of this engine configuration was demonstrated.
Technical Paper

Emissions from Catalyst Cars Beyond 50 000 Miles and the Implications for the Federal Motor Vehicle Control Program

1978-02-01
780027
High mileage vehicles (in excess of 50,000 miles) contribute more than half of all vehicular emissions. With the new catalytic converter equipped cars, the proportional contribution of these vehicles may be even higher than for pre-catalyst vehicles. Thus a substantial portion of motor vehicle related air pollution may be caused by vehicles not subject to the manufacturer directed provisions of the Clean Air Act. This paper presents a modeling effort based on hypotheses and some preliminary data, and suggests some alternatives to combat this potential problem.
X