Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Particle Size and Number Emissions from RCCI with Direct Injections of Two Fuels

2013-04-08
2013-01-1661
Many concepts of premixed diesel combustion at reduced temperatures have been investigated over the last decade as a means to simultaneously decrease engine-out particle and oxide of nitrogen (NO ) emissions. To overcome the trade-off between simultaneously low particle and NO emissions versus high "diesel-like" combustion efficiency, a new dual-fuel technique called Reactivity Controlled Compression Ignition (RCCI) has been researched. In the present study, particle size distributions were measured from RCCI for four gasoline:diesel compositions from 65%:35% to 84%:16%, respectively. Previously, fuel blending (reactivity control) had been carried out by a port fuel injection of the higher volatility fuel and a direct in-cylinder injection of the lower volatility fuel. With a recent mechanical upgrade, it was possible to perform injections of both fuels directly into the combustion chamber.
Technical Paper

A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations

2013-04-08
2013-01-1099
A comprehensive biodiesel combustion model is presented for use in multi-dimensional engine simulations. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. Previously, a detailed mechanism for methyl decanoate and methyl-9-decenoate was reduced from 3299 species to 85 species to represent the components of biodiesel fuel. In this work, a second reduction was performed to further reduce the mechanism to 69 species. Steady and unsteady spray simulations confirmed that the model adequately reproduced liquid penetration observed in biodiesel spray experiments. Additionally, the new model was able to capture expected fuel composition effects with low-volatility components and fuel blend sprays penetrating further.
Technical Paper

Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline

2012-04-16
2012-01-1336
In automotive industry it has been a challenge to retain diesel-like thermal efficiency while maintaining low emissions. Numerous studies have shown significant progress in achieving low emissions through the introduction of common-rail injection systems, multiple injections and exhaust gas recirculation and by using a high octane number fuel, like gasoline, to achieve adequate premixing. On the other hand, low temperature combustion strategies, like HCCI and PCCI, have also shown promising results in terms of reducing both NOx and soot emissions simultaneously. With the increasing capacity of computers, multi-dimensional CFD engine modeling enables a reasonably good prediction of combustion characteristics and pollutant emissions, which is the motivation behind the present research. The current research effort presents an optimization study of light-duty compression ignition engine performance, while meeting the emission regulation targets.
Technical Paper

Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency

2012-04-16
2012-01-0383
The present experimental study explores the effects of compression ratio and piston design in a heavy-duty diesel engine operated with Reactivity Controlled Compression Ignition (RCCI) combustion. In previous studies, RCCI combustion with in-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injections of higher reactivity fuels was demonstrated to permit near-zero levels of NOX and PM emissions in-cylinder, while simultaneously realizing high thermal efficiencies. The present study consists of RCCI experiments at loads from 4 to 17 bar indicated mean effective pressure at engine speeds of 1,300 and 1,700 [rev/min]. The experiments used a modified piston to examine the effect of piston crevice volume, squish geometry, and compression ratio on performance and efficiency.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2010-10-25
2010-01-2206
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Technical Paper

CFD Study of HCPC Turbocharged Engine

2010-10-25
2010-01-2107
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns an innovative concept to control HCCI combustion in diesel-fuelled engines. This new combustion concept is called Homogenous Charge Progressive Combustion (HCPC). HCPC is based on split-cycle principle.
X