Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 1: Experimental Data and Correlations Assessment

2015-09-06
2015-24-2392
In this paper, a high performance V12 spark-ignition engine is experimentally investigated at test-bench in order to fully characterize its behavior in terms of both average parameters, cycle-by-cycle variations and knock tendency, for different operating conditions. In particular, for each considered operating point, a spark advance sweep is actuated, starting from a knock-free calibration, up to intense knock operation. Sequences of 300 consecutive pressure cycles are measured for each cylinder, together with the main overall engine performance, including fuel flow, torque, and fuel consumption. Acquired data are statistically analyzed to derive the distributions of main indicated parameters, in order to find proper correlations with ensemble-averaged quantities. In particular, the Coefficient of Variation (CoV) of IMEP and of the in-cylinder peak pressure (pmax) are correlated to the average combustion phasing and duration (MFB50 and Δθb), with a good coefficient of determination.
Technical Paper

A Knock Model for 1D Simulations Accounting for Cyclic Dispersion Phenomena

2014-10-13
2014-01-2554
Control of knock phenomenon is becoming more and more important in modern SI engine, due to the tendency to develop high boosted turbocharged engines (downsizing). To this aim, improved modeling and experimental techniques are required to precisely define the maximum allowable spark advance. On the experimental side, the knock limit is identified based on some indices derived by the analysis of the in-cylinder pressure traces or of the cylinder block vibrations. The threshold levels of the knock indices are usually defined following an heuristic approach. On the modeling side, in the 1D codes, the knock is usually described by simple correlation of the auto-ignition time of the unburned gas zone within the cylinders. In addition, the latter methodology commonly refers to ensemble-averaged pressure cycles and, for this reason, does not take into account the cycle-by-cycle variations.
X