Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Estimation of Vehicle Tire-Road Contact Forces: A Comparison between Artificial Neural Network and Observed Theory Approaches

2018-04-03
2018-01-0562
One of the principal goals of modern vehicle control systems is to ensure passenger safety during dangerous maneuvers. Their effectiveness relies on providing appropriate parameter inputs. Tire-road contact forces are among the most important because they provide helpful information that could be used to mitigate vehicle instabilities. Unfortunately, measuring these forces requires expensive instrumentation and is not suitable for commercial vehicles. Thus, accurately estimating them is a crucial task. In this work, two estimation approaches are compared, an observer method and a neural network learning technique. Both predict the lateral and longitudinal tire-road contact forces. The observer approach takes into account system nonlinearities and estimates the stochastic states by using an extended Kalman filter technique to perform data fusion based on the popular bicycle model.
Technical Paper

Proposal for Improving the Performance of Longitudinal Acceleration of a Land Vehicle

2017-11-07
2017-36-0381
The present study introduces a proposal to improve the longitudinal performance of a land vehicle through the adoption of an unusual traction control system. The system is capable of improving the transfer of engine power to the ground and reduces the complexity of the task being performed by the driver. High-performance vehicles are able to achieve high levels of longitudinal acceleration and, sometimes, the power excess leads to the spinoff of the drive wheels, which decrease the ability of the tires to generate force, and consequently the vehicle acceleration. The proposed system acts in addition with the motor control, through the derivation of the motor speed signal, and its control by comparison with a predefined value. The control can delay or even suppress the ignition of the engine. Thus, the rate at which the engine gains speed, and consequently, the rate at which the vehicle accelerates, is limited.
Technical Paper

Stratified Torch Ignition Engine: Performance Analysis

2016-10-25
2016-36-0379
Global climate change and an increasing energy demand are driving the scientific community to further advance internal combustion engine technology. Invented by Sr. Henry Ricardo in 1918 the torch ignition system was able to significantly decrease engine’s fuel consumption and emission levels. Since the late 70s, soon after the Compound Vortex Controlled Combustion (CVCC) created by Honda, the torch ignition system R&D almost ceased due to the issues encountered by very complex and costly mechanic control systems that time. This work presents a stratified torch ignition prototype endowed with a sophisticated electronic control systems and components such as electro-injectors from direct injection systems placed on the pre-combustion chamber. The torch ignition prototype was tested and its performance are presented and compared with the baseline engine, which was used as a workhorse for the prototype engine construction.
Technical Paper

Study of Unmanned Supersonic Aircraft Configuration

2014-09-30
2014-36-0193
The aim of this work is to present the preliminary performance studies of the unmanned, lightweight (less than 10 kg), supersonic research aircraft. The studies comprise the typical mission for the aircraft's first supersonic version, based on the aerodynamic, thrust, and mass characteristics presented in a previous work. The aircraft, named as “Pohox”, is an Unmanned Air Vehicle, or “UAV”, and is intended to be the flying test bed for a multi cycle engine capable to provide thrust in subsonic, transonic and supersonic regimes. Different tools have been developed to perform the analysis. In the analysis, different flight paths are considered in order to provide insights in terms of fuel consumption, altitude and speed gain. Aircraft ‘excess power’ diagrams have been generated, to provide guidance for the definition of the flight paths to be analyzed. Drag dependency with Mach number is considered in the analysis.
Technical Paper

Weight Analysis for Low-Speed and Sun-Powered Aircraft

2014-09-30
2014-36-0508
One of the critical tasks of aircraft design is the definition of mass of aircraft's main items, and the aircraft mass distribution. Depending on the type of aircraft (e.g. commercial, general aviation, highly-maneuverable) different types of mass distribution data or trend curves are available; and in general these curves are based on the existing aircraft. But some lack of data is noticeable in terms of solar aircraft, i.e. the available information in terms of mass trends does not fulfill the needs of the designers of this type of aircraft. Considering this perspective, the main motivation of this study is to provide some information, in terms of mass trends and mass analysis for sun-powered aircraft, which could fill part of the gap, and stimulate other efforts in the same direction. Through this work, studies of mass breakdown of different examples of sun-powered aircraft are presented.
Technical Paper

Study of Unmanned Supersonic Aircraft Configuration

2013-10-07
2013-36-0353
The aim of this work is to present the preliminary configuration design studies for an unmanned, lightweight (less than 15 kg), supersonic research aircraft. The studies comprise the aircraft typical mission, the aerodynamic and structural arrangement, preliminary performance, as well as mass distribution. The aircraft, an Unmanned Air Vehicle, or “UAV”, is named as Pohox (“arrow” in Maxakali indian language). It is intended to be the flying test bed for a multicycle engine capable to provide thrust in subsonic, transonic and supersonic regimes. In order to provide validation of the analysis tools, flight performance characteristics of a known, high speed aircraft - North American X-15 - have been also evaluated and compared with the available flight test data. The present analysis is an important step towards the aircraft detailed definition. And the features associated with the configuration obtained are good indications of the technical feasibility of this supersonic UAV.
Technical Paper

A paraglider longitudinal flight mechanics modeling

2007-11-28
2007-01-2952
In this paper, it is developed a descriptive theory of paraglider flight mechanics, a gliding aircraft designed for entertainment purposes. After the analytical representation of the equipment geometry, the equations of longitudinal motion are derived and the most relevant parameters of performance and stability are identified. The developed theory is tried out based on real gliders analysis showing consistent results. The theoretical results here presented about paraglider flight mechanics can not be found in the available bibliography. It's expected that a scientific approaching of the paraglider stability and performance, as a branch in the aeronautic engineering field enables relevant improvements on flying and safety characteristics of these unconventional aircrafts.
Technical Paper

Performance and Emission Analysis of the Otto Cycle Engine Converted to Bi-Fuel Gasoline and Natural Gas (VNG)

2002-11-19
2002-01-3543
This work presents a full analysis of a bi-fuel engine converted to natural gas and aims to survey the main performance losses and the advantages in specific consumption and toxic emissions. With this purpose, dynamometric tests and curves survey of a Fiat Palio 1.6, 16V engine, according to Standard NBR ISO 1585. Tests were made using diverse mixers, trying to obtain the losses caused by this device when the engine is working with gasoline, after the conversion. Tests were performed for different ignition advances, with manual and electronic VNG flow control systems. Trials for many differents low gear engine regulation, looking for consumption reduction and lower emission rates. The gas pressure reducer was tested with and without heating, showing differents results, mainly for emission rates. Other than comparing different components and different engine operation conditions, an analysis of two different natural gas conversion kits were performed, both extensile used in Brazil.
X