Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Impinging Airflow on the Near Nozzle Characteristics of a Gasoline Spray from a Pressure-Swirl Atomiser

2006-10-16
2006-01-3343
The effects of impinging airflow on the near nozzle characteristics of an inwardly opening, high pressure-swirl atomiser are investigated in an optically-accessed, steady-state flow rig designed to emulate the intake flow of a typical, side-injected, 4-valve gasoline direct-injection combustion system. The results indicate that the impinging airflow has a relatively minor effect on the initial break-up of the fuel spray. However, the secondary break-up of the spray, i.e. the break-up of liquid ligaments, the spatial distribution of droplets within the spray and the location of the spray within the cylinder are significantly affected by the impinging air.
Technical Paper

Experimental Investigation into the Liquid Sheet Break-Up of High-Pressure DISI Swirl Atomizers

2003-10-27
2003-01-3102
This paper presents the results of an experimental study into the liquid sheet break-up mechanisms of high-pressure swirl atomizers of the type commonly used in direct-injection spark-ignition (DISI) engines. Sheet disintegration was investigated at two fuel pressures: 5 and 10 MPa, and three ambient back pressures: 50, 100 (atmospheric) and 200 kPa for a pre-production DISI injector. Microscopic images of the near-nozzle spray region were obtained with a high-speed rotating drum camera and copper vapour laser. For the range of conditions considered, the results show the initial break-up to occur in ‘perforated-sheet’ mode. A novel ‘void fraction’ analysis technique was applied to multiple images from the steady-state period of a single injection event in order to characterise and quantify details of the sheet break-up process. The sheet break-up lengths obtained by the authors were compared with the break-up lengths predicted by three commonly employed models from the literature.
X