Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Heavy Duty Diesel Engine and EAS Modelling and Validation for a Hardware-in-the-Loop Simulation System

2019-09-09
2019-24-0082
Faced with the need to reduce development time and cost in view of additional system complexity driven by ever more stringent emission regulations, the Hardware-in-the-Loop (HiL) simulation increasingly proves itself to be an advantageous tool not only in automotive companies but also in the off-road engine industry. The approach offers the possibility to analyze new engine control systems with fewer expensive engine dynamometer experiments and test drives. Thus, development cycles can be shortened and development costs reduced. This paper presents the development of an Internal Combustion Engine (ICE) and the correspondent Exhaust Aftertreatment System (EAS) model, its deployment on a HiL system and its application to pre-calibrate the engine for different vehicle cycles. A zero-dimensional mean value approach was chosen to guarantee adequate real-time factors for the coupling between the models and the Engine Control Unit (ECU).
Technical Paper

Powertrain Calibration Techniques

2019-09-09
2019-24-0196
Meeting the particle number (PN) emissions limits in vehicle test sequences needs specific attention on each power variation event occurring in the internal combustion engine (ICE). ICE power variations arise from engine start onwards along the entire test drive. In hybrid systems, there is one further source for transient ICE response: each power shift between E-motor and ICE introduces gas flow variations with subsequent temperature response in the ICE and in the engine aftertreatment system (EAS). This bears consequences for engine out emissions as well as for the EAS efficiency and even for the durability of a catalytic converter. As system calibration engineers must decide on numerous actuator parameters, their decisions, finally, are crucial for meeting legislative limits under the boundary conditions given by the hybrid vehicle’s drive environment.
Technical Paper

Power Electronic Noise-Simulation Measurement Comparison

2019-06-05
2019-01-1451
A growing development of hybrid or fully electrical drives increases the demand for an accurate prediction of noise and vibration characteristics of electric and electronic components. This paper describes the numerical and experimental investigation of noise emissions from power electronics, as one of the new important noise sources in electric vehicles. The noise emitted from the printed circuit board (PCB) equipped with multi-layer ceramic capacitors (MLCC) is measured and used for the calibration and validation of numerical model. Material properties are tuned using results from experimental modal analysis, with special attention to the orthotropic characteristic of the PCB glass-reinforced epoxy laminate sheet (FR-4). Electroacoustic excitation is pre-calculated using an extension of schematic-based EMC simulation and applied to the structural model. Structural vibrations are calculated with a commercial FEM solver with the modal frequency response analysis.
Technical Paper

Ash Transport and Deposition, Cake Formation and Segregation-A Modeling Study on the Impact of Ash on Particulate Filter Performance

2019-04-02
2019-01-0988
Non-combustible particles, commonly summarized as ash, influence the lifetime performance of wall flow filters. This study aims to investigate this influence by means of simulation. An existing transient 1D+1D wall flow filter model is extended by dedicated transport balances for soot and ash (1), by a discrete cake model describing changing soot and ash compositions over the cake height (2), by a phenomenological cake filtration model (3), by dedicated cake property models (4) and by a phenomenological model capturing the radial mobility of solids within the cake (5). Results of three different types of simulations are shown. First, the various sub-models are assessed in isolated simulation configurations. The combination of these shall serve as theoretical model validation. Second, isolated loading and passive regeneration simulations are performed.
Technical Paper

Dual Mode VCS Variable Compression System - System Integration and Vehicle Requirements

2019-04-02
2019-01-0248
Future legislation scenarios as well as stringent CO2 targets, in particular under real driving conditions, will require the introduction of new and additional powertrain technologies. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the Internal Combustion Engine (ICE). There is clearly a competition of new and different ICE-Technologies [1] including VCR. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The implementation of Miller or Atkinson cycles is an essential criterion for increased geometric Compression Ratio (CR). The DUAL MODE Variable Compression System (VCS)TM enables a 2-stage variation of the connecting rod length and thus of the compression ratio (CR).
Technical Paper

Model Based Assessment of Real-Driving Emissions - A Variation Study on Design and Operation Parameter

2019-01-09
2019-26-0241
In 2017 the European authorities put into effect the first part of a new certification test procedure for Real Driving Emissions (RDE). Similar tests are planned in other regions of the world, such as the upcoming China 6a/6b standards, further tightening emission limits, and also the introduction of RDE tests. Both restrictions pose challenging engineering tasks for upcoming vehicles. RDE certification tests feature significantly more demanding engine operating conditions and thus, emit more pollutants by orders of magnitude compared to known cycles like NEDC. Here, especially the reduction of NOx is a specific technical challenge, as it needs to compromise also with reduction targets on carbon dioxide. The fulfilment of both emission limits requires a widening of the focus from an isolated engine or exhaust aftertreatment view to a system engineering view involving all hardware and software domains of the vehicle.
Technical Paper

Increased 2-Wheeler Development Efficiency by Using a New Dedicated Test System Solution

2019-01-09
2019-26-0348
Fuel consumption is the most important contributor to the total cost of ownership for mass produced motorcycles. Therefore, best fuel economy is one main influencing criteria for a decision to purchase motorcycles. Furthermore, increasingly stringent emission legislations limit and additional OBD requirements must be fulfilled. A new combined test approach has been developed that minimizes accuracy losses in the development process which compensates for the variability of driving behavior in the chassis dyno environment. An engine testbed combined with a belt drive transmission enables operation in single engine or in Powerpack (i.e. internal combustion engine including transmission) configuration as well as under steady state or dynamic operating mode. Since the belt drive transmission is integrated in the test rig, realistic inertia situation for the single engine operating test configuration is ensured.
Journal Article

Real-World Fuel Consumption Measurement as the Base for the Compliance to Future CO2 Regulations

2019-01-09
2019-26-0357
The gap between the officially reported CO2 values and the actual performance of the vehicle on the road is continuously increasing. Numerous studies are showing differences between the official values and the real-world measurements of more than 40% in average, with further increases year by year. The fuel consumption of passenger cars are determined as part of the vehicle certification according to Euro 6 via carbon mass balance using exhaust gas measurement. By introducing the new world harmonized driving cycle (WLTC) in September 2017, which is addressing a more realistic speed profile or traffic conditions, the gap between the certification and road test is expected to be reduced in half. Additionally the EU Commission plans to monitor vehicles more closely. From 2020, devices for recording fuel and energy consumption will become mandatory in all passenger cars and light commercial vehicles, reflecting the average real world CO2 emissions.
Technical Paper

Model-Based Approach for Engine Performance Optimization

2018-10-30
2018-32-0082
State-of-the-art motorcycle engines consist of numerous variable components and require a powerful motor management to meet the growing customer expectations and the legislative requirements (e.g. exhaust and noise emissions, fuel consumption) at the same time. These demands are often competing and raise the level of complexity in calibration. In the racing domain, the optimization requirements are usually higher and test efficiency is crucial. Whilst the number of variables to control is growing, the time to perform an engine optimization remains the same or is even shortened. Therefore, simulation is becoming an essential part of the engine calibration optimization. Considering the special circumstances in racing, involving valuable hardware, as well as extremely short development and calibration iteration loops, only transient testing is possible.
Technical Paper

Experimental Design for Characterization of Force Transmissibility through Bearings in Electric Machines and Transmissions

2018-06-13
2018-01-1473
With the increasing stringent emissions legislation on ICEs, alongside requirements for enhanced fuel efficiency as key driving factors for many OEMs, there are many research activities supported by the automotive industry that focus on the development of hybrid and pure EVs. This change in direction from engine downsizing to the use of electric motors presents many new challenges concerning NVH performance, durability and component life. This paper presents the development of experimental methodology into the measurement of NVH characteristics in these new powertrains, thus characterizing the structure borne noise transmissibility through the shaft and the bearing to the housing. A feasibility study and design of a new system level test rig have been conducted to allow for sinusoidal radial loading of the shaft, which is synchronized with the shaft’s rotary frequency under high-speed transient conditions in order to evaluate the phenomena in the system.
Technical Paper

NVH Aspects of Electric Drives-Integration of Electric Machine, Gearbox and Inverter

2018-06-13
2018-01-1556
The rate in the electrification of vehicles has risen in recent years and, despite that electric vehicles are quiet, NVH remains a major requirement of vehicle development. The typical NVH issues are gear whine from the gearbox, noise from the E-machine or electromagnetic whine, as well as the noise from the inverter, and noise from inverter harmonics effect on E-machine. Simulation methodologies and CAE workflows are being enhanced to contribute to electric drive systems development. Front loading in the concept and layout design phase are necessary to avoid significant NVH issues at the end of development. The authors previously presented a workflow for combining the electric and mechanical noise for electric drives for the concept and layout design phases. This paper shows an application of the formerly presented workflow for NVH simulation and validation of a system with an Interior Permanent Magnet (IPM) E-machine.
Technical Paper

PMSM Noise - Simulation Measurement Comparison

2018-06-13
2018-01-1552
Growing development of hybrid and fully electrical drives increases demand for accurate prediction of noise and vibration characteristic of electric and electronic components. This paper describes the numerical and experimental investigation of noise emission from PMSM electric machine as a one of the most important noise sources in electric vehicles. Structural and air borne noise is measured on e-machine test rig and used for calibration and validation of the numerical model. The electro-magnetic field in PMSM is simulated using finite volume method. Electro-magnetic forces are applied as excitation to the 3D FE model of e-machine, mounded on test frame. Material properties are tuned using results from experimental modal analysis including identification of orthotropic characteristic of stator laminated core, assembled together with coil and end winding. Structural vibrations are calculated by modal frequency response analysis and applied as excitation in air borne noise simulation.
Technical Paper

Simulation and Application of Lightweight Damping Sandwich Material for I.C. Engines

2018-06-13
2018-01-1565
Making lighter engines is in the agenda of all OEMs in order to make their cars lighter and to reduce CO2 emission based on regulations. On the other hand, the noise regulations are getting more stringent and the customer impression of interior sounds is still an important aspect in vehicle development. Vehicle noise legislation has been revised numerous times since it was first established in February 1970. The latest revision in EU legislation introduces a revised test method which is used to enforce diminishing noise limits in three phases (EU Regulation No. 540/2014). Since 2016 the noise limit for passenger cars has been 72 dB(A). It will be reduced to 70 dB(A) in 2020 and to 68 dB(A) in 2024. These vehicle pass by noise limits cascade down to limitations on engine noise. New engine designs face a trade-off between a lightweight design and fulfilling the NVH targets. The conventional design updates are done by adding ribs and usually mass to the engine.
Technical Paper

Scale-Resolving Simulation of an ‘On-Road’ Overtaking Maneuver Involving Model Vehicles

2018-04-03
2018-01-0706
Aerodynamic properties of a BMW car model taking over a truck model are studied computationally by applying the scale-resolving PANS (Partially-averaged Navier-Stokes) approach. Both vehicles represent down-scaled (1:2.5), geometrically-similar models of realistic vehicle configurations for which on-road measurements have been performed by Schrefl (2008). The operating conditions of the modelled ‘on-road’ overtaking maneuver are determined by applying the dynamic similarity concept in terms of Reynolds number consistency. The simulated vehicle configuration constitutes of a non-moving truck model and a car model moving against the air flow, the velocity of which corresponds to the car velocity.
Technical Paper

Diffusion Supporting Passive Filter Regeneration- A Modeling Contribution on Coated Filters

2018-04-03
2018-01-0957
Wall flow particulate filters have been used as a standard exhaust aftertreatment device for many years. The interaction of particulate matter (PM) regeneration and catalytically supported reactions strongly depends on the given operating conditions. Temperature, species concentration and mass flow cause a change from advective to diffusive-controlled flow conditions and influence the rate controlling dominance of individual reactions. A transient 1D+1D model is presented considering advective and diffusive transport phenomena. The reaction scheme focuses on passive PM conversion and catalytic oxidation of NO. The model is validated with analytical references. The impact of back-diffusion is explored simulating pure advective and combined advective diffusive species transport. Rate approaches from literature are applied to investigate PM conversion at various operating conditions.
Technical Paper

The Dual Mode VCS Conrod System – Functional Development and Oil Investigations

2018-04-03
2018-01-0878
Variable Compression Systems (VCS) for Internal Combustion Engines (ICE) will become increasingly more important in the future to meet stringent global fuel economy and CO2 standards. A Dual Mode VCS is in development at AVL and the basic functionality and potential were described in a technical paper which was presented at the SAE WCX 2017 [1]. The system is based on a hydraulically switched and locked conrod with telescopic shank. The AVL Dual Mode VCS was designed and virtually optimized with CAE simulation methods for the boundary conditions of a typical 2.0 L Inline (I) 4 Turbocharged Gasoline Direct Injection (TGDI) engine representing state-of-the-art gasoline engine technology for the next years to come.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

2018-04-03
2018-01-0417
The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

2017-09-04
2017-24-0152
Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Technical Paper

A Correlation Methodology between AVL Mean Value Engine Model and Measurements with Concept Analysis of Mean Value Representation for Engine Transient Tests

2017-09-04
2017-24-0053
The use of state of the art simulation tools for effective front-loading of the calibration process is essential to support the additional efforts required by the new Real Driving Emission (RDE) legislation. The process needs a critical model validation where the correlation in dynamic conditions is used as a preliminary insight into the bounds of the representation domain of engine mean values. This paper focuses on the methodologies for correlating dynamic simulations with emissions data measured during dynamic vehicle operation (fundamental engine parameters and gaseous emissions) obtained using dedicated instrumentation on a diesel vehicle, with a particular attention for oxides of nitrogen NOx specie. This correlation is performed using simulated tests run within AVL’s mean value engine and engine aftertreatment (EAS) model MoBEO (Model Based Engine Optimization).
X