Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Understanding the Role of Filtered EGR on PM Emissions

In earlier work we have shown that engine operation with oxygenated fuels (e.g., biodiesel) reduces the particulate matter (PM) emissions and extends the engine tolerance to exhaust gas recirculation (EGR) before it reaches smoke limited conditions. The same result has also been reported when high cetane number fuels such as gas-to-liquid (GTL) are used. A likely mechanism for engine-out particulate growth is the reintroduction of particle nuclei into the cylinder through EGR. These recirculated PM particles serve as sites for further condensation and accumulation promoting larger and greater number of particles. In order to further our understanding of EGR influence on total PM production, a diesel particulate filter (DPF) was integrated into the EGR loop. A PM reduction of approximately 50% (soot) was achieved with diesel fuel through filtered EGR, whilst still maintaining a significant NOX reduction.
Technical Paper

Diesel Engine Performance and Emissions when First Generation Meets Next Generation Biodiesel

Limits on the total future potential of biodiesel fuel due to the availability of raw materials mean that ambitious 20% fuel replacement targets will need to be met by the use of both first and next generation biodiesel fuels. The use of higher percentage biodiesel blends requires engine recalibration, as it affects engine performance, combustion patterns and emissions. Previous work has shown that the combustion of 50:50 blends of biodiesel fuels (first generation RME and next generation synthetic fuel) can give diesel fuel-like performance (i.e. in-cylinder pressure, fuel injection and heat release patterns). This means engine recalibration can be avoided, plus a reduction in all the regulated emissions. Using a 30% biodiesel blend (with different first and next generation proportions) mixed with Diesel may be a more realistic future fuel.
Technical Paper

Activity of Prototype Catalysts on Exhaust Emissions from Biodiesel Fuelled Engines

A prototype catalyst has been developed and integrated within the aftertreatment exhaust system to control the HC, CO, PM and NOx emissions from diesel exhaust gas. The catalyst activity in removing HC and nano-particles was examined with exhaust gas from a diesel engine operating on biodiesel - Rapeseed Methyl Ester (RME). The tests were carried out at steady-state conditions for short periods of time, thus catalyst tolerance to sulphur was not examined. The prototype catalyst reduced the amount of hydrocarbons (HC) and the total PM. The quantity of particulate with electrical mobility diameter in nucleation mode size < 10nm, was significantly reduced over the catalyst. Moreover, it was observed that the use of EGR (20% vol.) for the biodiesel fuelled engine significantly increases the particle concentration in the accumulation mode with simultaneous reduction in the particle concentration in the nuclei mode.