Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Study of Multiple Premixed Compression Ignition Engine Fueled with Heavy Naphtha for High Efficiency and Low Emissions

2014-10-13
2014-01-2678
A study of Multiple Premixed Compression Ignition (MPCI) with heavy naphtha is performed on a light-duty single cylinder diesel engine. The engine is operated at a speed of 1600rpm with the net indicated mean effective pressure (IMEP) from 0.5MPa to 0.9MPa. Commercial diesel is also tested with the single injection for reference. The combustion and emissions characteristics of the heavy naphtha are investigated by sweeping the first (−200 ∼ −20 deg ATDC) and the second injection timing (−5 ∼ 15 deg ATDC) with an injection split ratio of 50/50. The results show that compared with diesel combustion, the naphtha MPCI can reduce NOx, soot emissions and particle number simultaneously while maintaining or achieving even higher indicated thermal efficiency. A low pressure rise rate can be achieved due to the two-stage combustion character of the MPCI mode but with the penalty of high HC and CO emissions, especially at 0.5MPa IMEP.
Technical Paper

High Efficiency and Low Pollutants Combustion: Gasoline Multiple Premixed Compression Ignition (MPCI)

2012-04-16
2012-01-0382
A new combustion mode namely multiple premixed compression ignition (MPCI) for gasoline engines was proposed. The MPCI mode can be realized by two or more times gasoline injections into cylinder with a high pressure around the compression TDC and featured with a premixed combustion after each injection in the cylinder, which is different from the existed gasoline direct injection compression ignition (GDICI) modes such as homogeneous charge compression ignition (HCCI) mode with gasoline injection occurred in intake stroke, and partially premixed compression ignition (PPCI) mode with multiple gasoline injections in intake and compression strokes before the start of combustion (SOC). Therefore the spray and combustion of the MPCI mode are alternatively occurred as "spray-combustion-spray-combustion" near the TDC, rather than "spray-spray-combustion" sequence as traditional PPCI gasoline engines.
X