Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Optical Study of DMF and Ethanol Combustion Under Dual-Injection Strategy

2012-04-16
2012-01-1237
The new fuel, 2, 5-dimenthylfuran, known as DMF, captured worldwide attention since the discovery of its new production method. As a potential bio-fuel, DMF is competitive to gasoline in many areas, such as energy density, combustion efficiency and emissions. However, little work has been performed on its unconventional combustion mode. In this work, high speed imaging and thermal investigation are carried out to study DMF and gasoline dual-injection on a single cylinder, direct injection spark ignition optical engine. This dual-injection strategy combines direct injection (DI) and port fuel injection (PFI) simultaneously which means two different fuels can blend in the cylinder with any ratio. It provides a flexible way to use bio-fuels with gasoline. DMF DI with gasoline PFI and ethanol DI with gasoline PFI are studied under different injection proportions (by volume) and IMEPs.
Technical Paper

An Investigation into the Operating Mode Transitions of a Homogeneous Charge Compression Ignition Engine Using EGR Trapping

2004-06-08
2004-01-1911
While Homogeneous Charge Compression Ignition (HCCI) is a promising combustion mode with significant advantages in fuel economy improvement and emission reductions for vehicle engines, it is subject to a number of limitations, for example, hardware and control complexity, or NOx and NVH deterioration near its operating upper load boundary, diminishing its advantages. Conventional spark-ignition combustion mode is required for higher loads and speeds, thus the operating conditions near the HCCI boundaries and their corresponding alternatives in SI mode must be studied carefully in order to identify practical strategies to minimise the impact of the combustion mode transition on the performance of the engine. This paper presents the results of an investigation of the combustion mode transitions between SI and HCCI, using a combination of an engine cycle simulation code with a chemical kinetics based HCCI combustion code.
X