Refine Your Search

Topic

Author

Search Results

Technical Paper

Life-cycle Analysis of Methanol Production from Coke Oven Gas in China

2023-10-31
2023-01-1646
The growing demand for transportation fuels and the global emphasis on reducing greenhouse gas (GHG) emissions have led to increased interest in analyzing transport GHG emissions from the life-cycle perspective. Methanol, a potentially carbon-neutral fuel synthesized from CO2 and H2, has emerged as a promising candidate. This paper conducts a comprehensive life-cycle analysis (LCA) of the GHG emissions associated with the methanol production process, utilizing data inventory from China in 2019. To simulate the synthesis and distillation process of methanol, Aspen Plus is employed, using parameters obtained from actual plants. GHG emissions are then calculated using the GREET model, incorporating updated industry statistics and research findings. The CO2 necessary for methanol production is captured from factory flue gas.
Technical Paper

Effects of Ethanol-Blended Fuel on Combustion Characteristics, Gaseous and Particulate Emissions in Gasoline Direct Injection (GDI) Engines

2021-09-22
2021-26-0356
Ethanol fuel blends with gasoline for spark ignition (SI) internal combustion engines are widely used on account of their advantages in terms of fuel economy and emissions reduction potential. The focus of this paper is to study the effects of these blends on combustion characteristics such as in-cylinder pressure profiles, gas-phase emissions (e.g., unburned hydrocarbons, NOx) and particulates (e.g., particulate matter and particle number) using both measurement campaigns and digital engineering workflows. Nineteen load-speed operating points in a 1L 3-cylinder GDI SI engine were measured and modelled. The measurements for in-cylinder pressure and emissions were repeated at each operating point for three types of fuel: gasoline (E0, 0% by volume of ethanol blend), E10 (10 % by volume of ethanol blend) and E20 (20% by volume of ethanol blend).
Technical Paper

Study of Effects of Deposit Formation on GDi Injector and Engine Performance

2020-09-15
2020-01-2099
Gasoline Direct Injection (GDI) vehicles now make up the majority of European new car sales and a significant share of the existing car parc. Despite delivering measurable engine efficiency benefits, GDI fuel systems are not without issues. Fuel injectors are susceptible to the formation of deposits in and around the injector nozzles holes. It is widely reported that these deposits can affect engine performance and that different fuels can alleviate the buildup of those deposits. This project aims to understand the underlying mechanisms of how deposit formation ultimately leads to a reduction in vehicle performance. Ten GDI fuel injectors, with differing levels of coking were taken from engine testing and consumer vehicles and compared using a range of imaging and engine tests. At the time of writing, a new GDI engine test is being developed by the Co-ordinating European Council (CEC) to be used by the fuel and fuel additive industry.
Technical Paper

Improving Cold Start and Transient Performance of Automotive Diesel Engine at Low Ambient Temperatures

2016-04-05
2016-01-0826
Ambient temperature has significant impact on engine start ability and cold start emissions from diesel engines. These cold start emissions are accounted for substantial amount of the overall regulatory driving cycle emissions like NEDC or FTP. It is likely to implement the low temperature emissions tests for diesel vehicles, which is currently applicable only for gasoline vehicles. This paper investigates the potential of the intake heating strategy on reducing the driving cycle emissions from the latest generation of turbocharged common rail direct injection diesel engines at low ambient temperature conditions. For this investigation an air heater was installed upstream of the intake manifold and New European Driving Cycle (NEDC) tests were conducted at -7°C ambient temperature conditions for the different intake air temperatures. Intake air heating reduced the cranking time and improved the fuel economy at low ambient temperatures.
Technical Paper

Influence of Coolant Temperature on Cold Start Performance of Diesel Passenger Car in Cold Environment

2016-02-01
2016-28-0142
Diesel engines are the versatile power source and is widely used in passenger car and commercial vehicle applications. Environmental temperature conditions, fuel quality, fuel injection strategies and lubricant have influence on cold start performance of the diesel engines. Strategies to overcome the cold start problem at very low ambient temperature include preheating of intake air, coolant, cylinder block. The present research work investigates the effect of coolant temperatures on passenger car diesel engine’s performance and exhaust emission characteristics during the cold start at cold ambient temperature conditions. The engine is soaked in the -7°C environment for 6 hours. The engine coolant is preheated to the desired coolant temperatures of 10 and 20°C by an external heater and the start ability tests were performed.
Technical Paper

Visualization of the Gas Flow Field within a Diesel Particulate Filter Using Magnetic Resonance Imaging

2015-09-01
2015-01-2009
In recent years magnetic resonance imaging (MRI) has been shown to be an attractive method for fluid flow visualization. In this work, we show how MRI velocimetry techniques can be used to non-invasively investigate and visualize the hydrodynamics of exhaust gas in a diesel particulate filter (DPF), both when clean and after loading with diesel engine exhaust particulate matter. The measurements have been used to directly measure the gas flow in the inlet and outlet channels of the DPF, both axial profiles along the length and profiles across the channel diameter. Further, from this information we show that it is possible to indirectly ascertain the superficial wall-flow gas velocity and the soot loading profiles along the filter channel length.
Journal Article

Performance, Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE3-4)/ Wide Distillation Fuel (WDF) Blends in Premixed Low Temperature Combustion (LTC)

2015-04-14
2015-01-0810
Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from Initial Boiling Point (IBP) of gasoline to Final Boiling Point (FBP) of diesel. Polyoxymethylene Dimethyl Ethers (PODEn) have high oxygen content and cetane number, are promising green additive to diesel fuel. In this paper, WDF was prepared by blending diesel and gasoline at ratio of 1:1, by volume; the mass distribution of oligomers in the PODE3-4 product was 88.9% of PODE3 and 8.46% of PODE4. Diesel fuel (Diesel), WDF (G50D50) and WDF (80%)-PODE3-4 (20%) (G40D40P20) were tested in a light-duty single-cylinder diesel engine, combustion characteristic, fuel consumption and exhaust emissions were measured. The results showed that: at idling condition, G40D40P20 has better combustion stability, higher heat release rate, higher thermal efficiency compared with G50D50.
Technical Paper

Investigations into Multiple Premixed Compression Ignition Mode Fuelled with Different Mixtures of Gasoline and Diesel

2015-04-14
2015-01-0833
A study of Multiple Premixed Compression Ignition (MPCI) with mixtures of gasoline and diesel is performed on a light-duty single cylinder diesel engine. The engine is operated at a speed of 1600rpm with the same fuel mass per cycle. By keeping the same intake pressure and EGR ratio, the influence of different blending ratios in gasoline and diesel mixtures (90vol%, 80vol% and 70vol% gasoline) is investigated. Combustion and emission characteristics are compared by sweeping the first (−95 ∼ −35deg ATDC) and the second injection timing (−1 ∼ 9deg ATDC) with an injection split ratio of 80/20 and an injection pressure of 80MPa. The results show that compared with diesel combustion, the gasoline and diesel mixtures can reduce NOx and soot emissions simultaneously while maintaining or achieving even higher indicated thermal efficiency, but the HC and CO emissions are high for the mixtures.
Technical Paper

Performance of Naphtha in Different Compression Ignition Combustion Modes under Various EGR Rates

2015-04-14
2015-01-0804
Experimental research were carried out on a compression ignition engine with compression ratio of 17.5 with direct-run Naphtha. Exhaust recirculation ratio sweeps were carried out with three injection strategies. Premixed charge compression ignition, partially premixed combustion and low temperature combustion modes were realized and compared with each other. The first injection strategy is single injection. The injection timing is scanned to form partially premixed combustion and low temperature combustion. The second injection strategy features a large early first injection with fixed timing to form premixed charge and a small second injection near top dead center, which was scanned. The third injection strategy is similar to the traditional diesel injection strategy, which has a small pilot injection with fixed interval before the main injection. Results show that all injection strategies could realize both low NOx and low particulate matter emissions simultaneously.
Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
Journal Article

The Use of a Partial Flow Filter to Assist the Diesel Particulate Filter and Reduce Active Regeneration Events

2014-10-13
2014-01-2806
This study investigates the potential of using a partial flow filter (PFF) to assist a wall flow diesel particulate filter (DPF) and reduce the need for active regeneration phases that increase engine fuel consumption. First, the filtration efficiency of the PFF was studied at several engine operating conditions, varying the filter space velocity (SV), through modification of the exhaust gas flow rate, and engine-out particulate matter (PM) concentration. The effects of these parameters were studied for the filtration of different particle size ranges (10-30 nm, 30-200 nm and 200-400 nm). For the various engine operating conditions, the PFF showed filtration efficiency over 25% in terms of PM number and mass. The PFF filtration behaviour was also investigated at idle engine operation producing a high concentration of nuclei particulates for which the filter was able to maintain 60% filtration efficiency.
Journal Article

Low Ambient Temperature Effects on a Modern Turbocharged Diesel engine running in a Driving Cycle

2014-10-13
2014-01-2713
Engine transient operation has attracted a lot of attention from researchers due to its high frequency of occurrence during daily vehicle operation. More emissions are expected compared to steady state operating conditions as a result of the turbo-lag problem. Ambient temperature has significant influences on engine transients especially at engine start. The effects of ambient temperature on engine-out emissions under the New European Driving Cycle (NEDC) are investigated in this study. The transient engine scenarios were carried out on a modern 3.0 L, V6 turbocharged common rail diesel engine fuelled with winter diesel in a cold cell within the different ambient temperature ranging between +20 °C and −7 °C. The engine with fuel, coolant, combustion air and lubricating oil were soaked and maintained at the desired test temperatures during the transient scenarios.
Technical Paper

Investigation on the Performance of Diesel Oxidation Catalyst during Cold Start at L ow Temperature Conditions

2014-10-13
2014-01-2712
Cold start is a critical operating condition for diesel engines because of the pollutant emissions produced by the unstable combustion and non-performance of after-treatment at lower temperatures. In this research investigation, a light-duty turbocharged diesel engine equipped with a common rail injection system was tested on a transient engine testing bed to study the starting process in terms of engine performance and emissions. The engine (including engine coolant, engine oil and fuel) was soaked in a cold cell at −7°C for at least 8 hours before starting the test. The engine operating parameters such as engine speed, air/fuel ratio, and EGR rate were recorded during the tests. Pollutant emissions (Hydrocarbon (HC), NOx, and particles both in mode of nucleation and accumulation) were measured before and after the Diesel Oxidation Catalyst (DOC). The results show that conversion efficiency of NOx was higher during acceleration period at −7°C start than the case of 20°C start.
Technical Paper

A Study of Methodology for the Investigation of Engine Transient Performance

2014-10-13
2014-01-2714
Automotive engines especially turbocharged diesel engines produce higher level of emissions during transient operation than in steady state. In order to improve understanding of the engine transients and develop advanced technologies to reduce the transient emissions, the engine researchers require accurate data acquisition and appropriate post-processing techniques which are capable of dealing with noise and synchronization issues. Four alternative automated methods namely FFT (Fast Fourier Transform), low-pass, linear and zero-phase filters were implemented on in-cylinder pressure. The data of each individual cycle was compared and analyzed for the suitability of combustion diagnostic. FFT filtering was the best suited method since it eliminated most pressure fluctuation and provided smooth rate of heat release profiles for each cycle.
Technical Paper

Experimental Study of Multiple Premixed Compression Ignition Engine Fueled with Heavy Naphtha for High Efficiency and Low Emissions

2014-10-13
2014-01-2678
A study of Multiple Premixed Compression Ignition (MPCI) with heavy naphtha is performed on a light-duty single cylinder diesel engine. The engine is operated at a speed of 1600rpm with the net indicated mean effective pressure (IMEP) from 0.5MPa to 0.9MPa. Commercial diesel is also tested with the single injection for reference. The combustion and emissions characteristics of the heavy naphtha are investigated by sweeping the first (−200 ∼ −20 deg ATDC) and the second injection timing (−5 ∼ 15 deg ATDC) with an injection split ratio of 50/50. The results show that compared with diesel combustion, the naphtha MPCI can reduce NOx, soot emissions and particle number simultaneously while maintaining or achieving even higher indicated thermal efficiency. A low pressure rise rate can be achieved due to the two-stage combustion character of the MPCI mode but with the penalty of high HC and CO emissions, especially at 0.5MPa IMEP.
Technical Paper

Thermal Performance of Diesel Aftertreatment: Material and Insulation CFD Analysis

2014-10-13
2014-01-2818
Recent developments in diesel engines lead to increased fuel efficiency and reduced exhaust gas temperature. Therefore more energy efficient aftertreatment systems are required to comply with tight emission regulations. In this study, a computational fluid dynamics package was used to investigate the thermal behaviour of a diesel aftertreatment system. A parametric study was carried out to identify the most influential pipework material and insulation characteristics in terms of thermal performance. In the case of the aftertreatment pipework and canning material effect, an array of different potential materials was selected and their effects on the emission conversion efficiency of a Diesel Oxidation Catalyst (DOC) were numerically investigated over a driving cycle. Results indicate that although the pipework material's volumetric heat capacity was decreased by a factor of four, the total emission reduction was only considerable during the cold start.
Technical Paper

Impact of Cold Ambient Conditions on Cold Start and Idle Emissions from Diesel Engines

2014-10-13
2014-01-2715
The cold start performance of a diesel engine has been receiving more attention as the European Commission emission regulations directed to include cold start emissions in the legislative emission driving cycles. The cold start performance of diesel engines is influenced by the ambient temperature conditions, engine design, fuel, lubricant and engine operating conditions. The present research work investigates the effect of cold ambient conditions on the diesel engine's performance and the exhaust emission (gaseous and particulate emissions) characteristics during the cold start and followed by idle. The engine startability and idling tests were carried out on the latest generation of diesel engine in a cold cell at various ambient temperatures ranging between +20°C and −20°C. Higher fuel consumption and peak speed were observed at very cold ambient compared to those at normal ambient during the cold start.
Technical Paper

Prediction of Wear Behavior of Aluminum Alloy Reinforced with Carbon Nanotubes Using Nonlinear Identification

2014-04-01
2014-01-0947
Aluminum metal matrix composites reinforced with particulates have attracted much attention in the automotive industry, due to their improved wear resistance in comparison to aluminum alloys, in recent years. The wear behavior is the critical factor influencing the product life and performance in engineering components. Carbon nanotubes (CNT) are one of the most promising candidates of reinforcements used to improve mechanical strength such as wear in metal matrix composites (MMCs). However, in industrial applications, wear tests are relatively expensive and prolonged. As a result, for several years, research has been increasingly concentrated on development of wear prediction models. In this study, prediction of wear behavior of aluminum (Al) matrix (MMCs) reinforced with different amounts (0, 0.5, 1 and 2 wt%) of CNTs was investigated. A nonlinear autoregressive exogenous (NARX) model structure was chosen for the modeling.
Journal Article

An Assessment of the Influence of Gas Turbine Lubricant Thermal Oxidation Test Method Parameters Towards the Development of a New Engine Representative Laboratory Test Method

2013-12-20
2013-01-9004
In the development of a more accurate laboratory scale method, the ability to replicate the thermal oxidative degradation mechanisms seen in gas turbine lubricants, is an essential requirement. This work describes an investigation into the influence of key reaction parameters and the equipment set up upon extent and mechanism of oil degradation. The air flow rate through the equipment was found to be critical to both degradation rate and extent of volatilization loss from the system. As these volatile species can participate in further reactions, it is important that the extent to which they are allowed to leave the test system is matched, where possible, to the conditions in the gas turbine. The presence of metal specimens was shown to have a small influence on the rate of degradation of the lubricant. Loss of metal from the copper and silver specimens due to the mild corrosive effect of the lubricant was seen.
Journal Article

Investigation on Transient Emissions of a Turbocharged Diesel Engine Fuelled by HVO Blends

2013-04-08
2013-01-1307
Transient emissions of a turbocharged three-litre V6 diesel engine fuelled by hydrogenated vegetable oil (HVO) blends were experimentally investigated and compared with transient emissions of diesel as reference. The transient emissions measurements were made by highly-dynamic emissions instrumentations including Cambustion HFR500, CLD500 and DMS500 particulate analyzer. The HVO blends used in this study were 30% and 60% of HVO in diesel by volume. The transient conditions were simulated by load increases over 5 s, 10 s and 20 s durations at a constant engine speed. The particulate, NO, HC concentrations were measured to investigate the mechanism of emission formation under such transient schedules. The results showed that as the load increased, NO concentrations initially had a small drop before dramatically increasing for all the fuels investigated which can be associated with the turbocharger lag during the load transient.
X